IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p985-d1069011.html
   My bibliography  Save this article

Polynomial Distributions and Transformations

Author

Listed:
  • Yue Yu

    (ZJU-UIUC Institute, Haining 314400, China)

  • Pavel Loskot

    (ZJU-UIUC Institute, Haining 314400, China)

Abstract

Polynomials are common algebraic structures, which are often used to approximate functions, such as probability distributions. This paper proposes to directly define polynomial distributions in order to describe stochastic properties of systems rather than to assume polynomials for only approximating known or empirically estimated distributions. Polynomial distributions offer great modeling flexibility and mathematical tractability. However, unlike canonical distributions, polynomial functions may have non-negative values in the intervals of support for some parameter values; their parameter numbers are usually much larger than for canonical distributions, and the interval of support must be finite. Hence, polynomial distributions are defined here assuming three forms of a polynomial function. Transformations and approximations of distributions and histograms by polynomial distributions are also considered. The key properties of the polynomial distributions are derived in closed form. A piecewise polynomial distribution construction is devised to ensure that it is non-negative over the support interval. A goodness-of-fit measure is proposed to determine the best order of the approximating polynomial. Numerical examples include the estimation of parameters of the polynomial distributions and generating polynomially distributed samples.

Suggested Citation

  • Yue Yu & Pavel Loskot, 2023. "Polynomial Distributions and Transformations," Mathematics, MDPI, vol. 11(4), pages 1-28, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:985-:d:1069011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joakim Munkhammar & Lars Mattsson & Jesper Rydén, 2017. "Polynomial probability distribution estimation using the method of moments," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    2. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    3. Badinelli, Ralph D., 1996. "Approximating probability density functions and their convolutions using orthogonal polynomials," European Journal of Operational Research, Elsevier, vol. 95(1), pages 211-230, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    3. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Ramadan A. ZeinEldin & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2019. "Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution," Mathematics, MDPI, vol. 7(10), pages 1-24, October.
    5. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    6. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    7. Abdulhakim A. Al-Babtain & Ibrahim Elbatal & Christophe Chesneau & Farrukh Jamal, 2020. "Box-Cox Gamma-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    8. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    9. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    10. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    11. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    12. Hesham Reyad & Mustafa Ç. Korkmaz & Ahmed Z. Afify & G. G. Hamedani & Soha Othman, 2021. "The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(2), pages 345-366, June.
    13. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    14. Rana Muhammad Usman & Maryam Ilyas, 2024. "Power Burr X-T family of distributions: properties, estimation methods and real-life applications," Computational Statistics, Springer, vol. 39(6), pages 2949-2974, September.
    15. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.
    16. Indranil Ghosh & Saralees Nadarajah, 2017. "On some further properties and application of Weibull-R family of distributions," Papers 1711.00171, arXiv.org.
    17. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
    18. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    19. Sanku Dey & Mazen Nassar & Devendra Kumar, 2017. "$$\alpha $$ α Logarithmic Transformed Family of Distributions with Application," Annals of Data Science, Springer, vol. 4(4), pages 457-482, December.
    20. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:985-:d:1069011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.