IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p789-d1057496.html
   My bibliography  Save this article

Fault-Tolerant Terminal Sliding Mode Control with Disturbance Observer for Vibration Suppression in Non-Local Strain Gradient Nano-Beams

Author

Listed:
  • Hajid Alsubaie

    (Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Amin Yousefpour

    (Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA)

  • Ahmed Alotaibi

    (Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Naif D. Alotaibi

    (Communication Systems and Networks Research Group, Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hadi Jahanshahi

    (Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

Abstract

This research investigates the stabilization and control of an uncertain Euler–Bernoulli nano-beam with fixed ends. The governing partial differential equations of motion for the nano-beam are derived using Hamilton’s principle and the non-local strain gradient theory. The Galerkin method is then applied to transform the resulting dimensionless partial differential equation into a nonlinear ordinary differential equation. A novel fault-tolerant terminal sliding mode control technique is proposed to address the uncertainties inherent in micro/nano-systems and the potential for faults and failures in control actuators. The proposed controller includes a finite time estimator, the stability of which and the convergence of the error dynamics are established using the Lyapunov theorem. The significance of this study lies in its application to the field of micro/nano-mechanics, where the precise control and stabilization of small-scale systems is crucial for the development of advanced technologies such as nano-robotics and micro-electromechanical systems (MEMS). The proposed control technique addresses the inherent uncertainties and potential for faults in these systems, making it a valuable choice for practical applications. The simulation results are presented to demonstrate the effectiveness of the proposed control scheme and the high accuracy of the estimation algorithm.

Suggested Citation

  • Hajid Alsubaie & Amin Yousefpour & Ahmed Alotaibi & Naif D. Alotaibi & Hadi Jahanshahi, 2023. "Fault-Tolerant Terminal Sliding Mode Control with Disturbance Observer for Vibration Suppression in Non-Local Strain Gradient Nano-Beams," Mathematics, MDPI, vol. 11(3), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:789-:d:1057496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jahanshahi, Hadi & Yousefpour, Amin & Wei, Zhouchao & Alcaraz, Raúl & Bekiros, Stelios, 2019. "A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 66-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    2. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Truong Ngoc Cuong & Hwan-Seong Kim & Le Ngoc Bao Long & Sam-Sang You, 2024. "Seaport profit analysis and efficient management strategies under stochastic disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 212-240, June.
    4. Fawaz E. Alsaadi & Amirreza Yasami & Hajid Alsubaie & Ahmed Alotaibi & Hadi Jahanshahi, 2022. "Control of a Hydraulic Generator Regulating System Using Chebyshev-Neural-Network-Based Non-Singular Fast Terminal Sliding Mode Method," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    5. Bambe Moutsinga, Claude Rodrigue & Pindza, Edson & Maré, Eben, 2021. "Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    7. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    10. Chu, Yu-Ming & Bekiros, Stelios & Zambrano-Serrano, Ernesto & Orozco-López, Onofre & Lahmiri, Salim & Jahanshahi, Hadi & Aly, Ayman A., 2021. "Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Jahanshahi, Hadi & Orozco-López, Onofre & Munoz-Pacheco, Jesus M. & Alotaibi, Naif D. & Volos, Christos & Wang, Zhen & Sevilla-Escoboza, R. & Chu, Yu-Ming, 2021. "Simulation and experimental validation of a non-equilibrium chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Gain-Scheduled Sliding-Mode-Type Iterative Learning Control Design for Mechanical Systems," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    13. Al-Barakati, Abdullah A. & Mesdoui, Fatiha & Bekiros, Stelios & Kaçar, Sezgin & Jahanshahi, Hadi, 2024. "A variable-order fractional memristor neural network: Secure image encryption and synchronization via a smooth and robust control approach," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    14. Wang, Shaojie & He, Shaobo & Yousefpour, Amin & Jahanshahi, Hadi & Repnik, Robert & Perc, Matjaž, 2020. "Chaos and complexity in a fractional-order financial system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Truong Ngoc Cuong & Le Ngoc Bao Long & Hwan-Seong Kim & Sam-Sang You, 2023. "Data analytics and throughput forecasting in port management systems against disruptions: a case study of Busan Port," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 61-89, March.
    16. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Luo, Runzi & Song, Zijun & Liu, Shuai, 2023. "Fixed-time observed synchronization of chaotic system with all state variables unavailable in some periods," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Hajid Alsubaie & Amin Yousefpour & Ahmed Alotaibi & Naif D. Alotaibi & Hadi Jahanshahi, 2023. "Stabilization of Nonlinear Vibration of a Fractional-Order Arch MEMS Resonator Using a New Disturbance-Observer-Based Finite-Time Sliding Mode Control," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    19. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    20. Bouri, Elie & Gupta, Rangan, 2021. "Predicting Bitcoin returns: Comparing the roles of newspaper- and internet search-based measures of uncertainty," Finance Research Letters, Elsevier, vol. 38(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:789-:d:1057496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.