IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p3005-d893187.html
   My bibliography  Save this article

Gain-Scheduled Sliding-Mode-Type Iterative Learning Control Design for Mechanical Systems

Author

Listed:
  • Qijia Yao

    (School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Hadi Jahanshahi

    (Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Stelios Bekiros

    (FEMA, University of Malta, MSD 2080 Msida, Malta
    LSE Health, Department of Health Policy, London School of Economics and Political Science, London WC2 A2 AE, UK
    IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France)

  • Sanda Florentina Mihalache

    (Automatic Control, Computers & Electronics Department, Petroleum-Gas University of Ploiești, 100680 Ploiești, Romania)

  • Naif D. Alotaibi

    (Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

In this paper, a novel gain-scheduled sliding-mode-type (SM-type) iterative learning (IL) control approach is proposed for the high-precision trajectory tracking of mechanical systems subject to model uncertainties and disturbances. Based on the SM variable, the proposed controller is synthesized involving a feedback regulation item, a feedforward learning item, and a robust switching item. The feedback regulation item is adopted to regulate the position and velocity tracking errors, the feedforward learning item is applied to handle the model uncertainties and repetitive disturbance, and the robust switching item is introduced to compensate the nonrepetitive disturbance and linearization residual error. Moreover, the gain-scheduled mechanism is employed for both the feedback regulation item and feedforward learning item to enhance the convergence speed. Convergence analysis illustrates that the position and velocity tracking errors can eventually regulate to zero under the proposed controller. By combining the advantages of both SM control and IL control, the proposed controller has strong robustness against model uncertainties and disturbances. Lastly, simulations and comparisons are provided to evaluate the efficiency and excellent performance of the proposed control approach.

Suggested Citation

  • Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Gain-Scheduled Sliding-Mode-Type Iterative Learning Control Design for Mechanical Systems," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3005-:d:893187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/3005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/3005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Farah Bouakrif & Djamel Boukhetala & Farès Boudjema, 2013. "Velocity observer-based iterative learning control for robot manipulators," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(2), pages 214-222.
    3. Jahanshahi, Hadi & Yousefpour, Amin & Wei, Zhouchao & Alcaraz, Raúl & Bekiros, Stelios, 2019. "A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 66-77.
    4. Jahanshahi, Hadi & Sajjadi, Samaneh Sadat & Bekiros, Stelios & Aly, Ayman A., 2021. "On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Wang, Yong-Long & Jahanshahi, Hadi & Bekiros, Stelios & Bezzina, Frank & Chu, Yu-Ming & Aly, Ayman A., 2021. "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fawaz W. Alsaade & Mohammed S. Al-zahrani, 2023. "A Novel Fault-Tolerant Super-Twisting Control Technique for Chaos Stabilization in Fractional-Order Arch MEMS Resonators," Mathematics, MDPI, vol. 11(10), pages 1-18, May.
    2. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Tswa-wen Pierre-Patrick Banga-Banga & Carl Kriger & Yohan Darcy Mfoumboulou, 2022. "Decentralized Model-Reference Adaptive Control Based Algorithm for Power Systems Inter-Area Oscillation Damping," Energies, MDPI, vol. 15(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Ding & Oumate Alhadji Abba & Hadi Jahanshahi & Madini O. Alassafi & Wen-Hua Huang, 2022. "Dynamical Investigation, Electronic Circuit Realization and Emulation of a Fractional-Order Chaotic Three-Echelon Supply Chain System," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    2. Wang, Bo & Liu, Jinping & Alassafi, Madini O. & Alsaadi, Fawaz E. & Jahanshahi, Hadi & Bekiros, Stelios, 2022. "Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    4. Hajid Alsubaie & Amin Yousefpour & Ahmed Alotaibi & Naif D. Alotaibi & Hadi Jahanshahi, 2023. "Stabilization of Nonlinear Vibration of a Fractional-Order Arch MEMS Resonator Using a New Disturbance-Observer-Based Finite-Time Sliding Mode Control," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    5. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Qijia Yao & Hadi Jahanshahi & Larissa M. Batrancea & Naif D. Alotaibi & Mircea-Iosif Rus, 2022. "Fixed-Time Output-Constrained Synchronization of Unknown Chaotic Financial Systems Using Neural Learning," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    7. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    9. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Indirect Neural-Enhanced Integral Sliding Mode Control for Finite-Time Fault-Tolerant Attitude Tracking of Spacecraft," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    10. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Al-Barakati, Abdullah A. & Mesdoui, Fatiha & Bekiros, Stelios & Kaçar, Sezgin & Jahanshahi, Hadi, 2024. "A variable-order fractional memristor neural network: Secure image encryption and synchronization via a smooth and robust control approach," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    12. Wang, Yong-Long & Jahanshahi, Hadi & Bekiros, Stelios & Bezzina, Frank & Chu, Yu-Ming & Aly, Ayman A., 2021. "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. P.R. Ouyang & V. Pano & T. Dam, 2015. "PID position domain control for contour tracking," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(1), pages 111-124, January.
    16. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    17. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Truong Ngoc Cuong & Hwan-Seong Kim & Le Ngoc Bao Long & Sam-Sang You, 2024. "Seaport profit analysis and efficient management strategies under stochastic disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 212-240, June.
    19. Fawaz E. Alsaadi & Amirreza Yasami & Hajid Alsubaie & Ahmed Alotaibi & Hadi Jahanshahi, 2022. "Control of a Hydraulic Generator Regulating System Using Chebyshev-Neural-Network-Based Non-Singular Fast Terminal Sliding Mode Method," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    20. Bambe Moutsinga, Claude Rodrigue & Pindza, Edson & Maré, Eben, 2021. "Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3005-:d:893187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.