IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4603-d1277716.html
   My bibliography  Save this article

Optimization Hybrid of Multiple-Lag LSTM Networks for Meteorological Prediction

Author

Listed:
  • Lin Zhu

    (School of Mathematics, Shandong University, Jinan 250100, China)

  • Zhihua Zhang

    (School of Mathematics, Shandong University, Jinan 250100, China)

  • M. James C. Crabbe

    (Wolfson College, Oxford University, Oxford OX2 6UD, UK)

  • Lipon Chandra Das

    (School of Mathematics, Shandong University, Jinan 250100, China
    Department of Mathematics, University of Chittagong, Chittagong 4331, Bangladesh)

Abstract

Residences in poor regions always depend on rain-fed agriculture, so they urgently need suitable tools to make accurate meteorological predictions. Unfortunately, meteorological observations in these regions are usually sparse and irregularly distributed. Conventional LSTM networks only handle temporal sequences and cannot utilize the links of meteorological variables among stations. GCN-LSTM networks only capture local spatial structures through the simple structures of fixed adjacency matrices, and the CNN-LSTM can only mine gridded meteorological observations for further predictions. In this study, we propose an optimization hybrid of multiple-lag LSTM networks for meteorological predictions. Our model can make full use of observed data at partner stations under different time-lag windows and strong links among the local observations of meteorological variables to produce future predictions. Numerical experiments on the meteorological predictions of Bangladesh demonstrate that our networks are superior to the classic LSTM and its variants GCN-LSTM and CNN-LSTM, as well as the SVM and DT.

Suggested Citation

  • Lin Zhu & Zhihua Zhang & M. James C. Crabbe & Lipon Chandra Das, 2023. "Optimization Hybrid of Multiple-Lag LSTM Networks for Meteorological Prediction," Mathematics, MDPI, vol. 11(22), pages 1-18, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4603-:d:1277716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    2. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiarui & Fu, Yuchen, 2023. "Decomposition spectral graph convolutional network based on multi-channel adaptive adjacency matrix for renewable energy prediction," Energy, Elsevier, vol. 284(C).
    2. Linsenmeier, Manuel & Shrader, Jeffrey G., 2023. "Global inequalities in weather forecasts," SocArXiv 7e2jf, Center for Open Science.
    3. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    4. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    5. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    6. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    7. Anand, Vaibhav, 2022. "The Value of Forecast Improvements: Evidence from Advisory Lead Times and Vehicle Crashes," MPRA Paper 114491, University Library of Munich, Germany.
    8. Chuyuan Lin & Ying Yu & Lucas Y. Wu & Jiguo Cao, 2023. "Unsupervised learning on U.S. weather forecast performance," Computational Statistics, Springer, vol. 38(3), pages 1193-1213, September.
    9. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    10. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    12. Husain Najafi & Pallav Kumar Shrestha & Oldrich Rakovec & Heiko Apel & Sergiy Vorogushyn & Rohini Kumar & Stephan Thober & Bruno Merz & Luis Samaniego, 2024. "High-resolution impact-based early warning system for riverine flooding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    14. Tang, Wenliang & Yang, Mian & Duan, Hongbo, 2023. "Temperature and corporate tax avoidance: Evidence from Chinese manufacturing firms," Energy Economics, Elsevier, vol. 117(C).
    15. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
    16. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    17. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    19. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    20. Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4603-:d:1277716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.