IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4484-d1270592.html
   My bibliography  Save this article

Application of a Stochastic Extension of the Analytical Design of Aggregated Regulators to a Multidimensional Biomedical Object

Author

Listed:
  • Svetlana Kolesnikova

    (Department of Computer Technologies and Software Engineering, Institute of Computing Systems and Programming, Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg 190000, Russia)

  • Ekaterina Kustova

    (Department of Computer Technologies and Software Engineering, Institute of Computing Systems and Programming, Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg 190000, Russia)

Abstract

The results of the application of the methods of the synergetic control theory to a high-dimensional immunology object with uncertainty in its descriptions are reported. The control here is the therapy treated as a problem for constructing an optimal cure program. The control object is presented in continuous and discrete forms, i.e., mathematical models given by a system of ordinary differential equations with a bounded disturbance and a system of stochastic difference equations, respectively. Two algorithms for deriving robust regulators applicable to a 10-dimensional nonlinear multi-loop system with unstable limit states, which models an immune response to the hepatitis B infection, are obtained. Analytical control design for a continuous model relies on the method of nonlinear adaptation on the target manifold. The second algorithm represents a stochastic extension of the method of analytical design of aggregated discrete regulators minimizing the variance of the target macro variable. The numerical simulation of the developed control systems indicates the performance of the designed control algorithms. The results of this study can be used as a component part of the mathematical tools of expert systems and decision support systems.

Suggested Citation

  • Svetlana Kolesnikova & Ekaterina Kustova, 2023. "Application of a Stochastic Extension of the Analytical Design of Aggregated Regulators to a Multidimensional Biomedical Object," Mathematics, MDPI, vol. 11(21), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4484-:d:1270592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Anuj & Srivastava, Prashant K. & Dong, Yueping & Takeuchi, Yasuhiro, 2020. "Optimal control of infectious disease: Information-induced vaccination and limited treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. de Souza, Elder & Lyra, Marcelo & Gleria, Iram, 2009. "Critical bifurcations and chaos in a delayed nonlinear model for the immune response," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2494-2501.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    2. Sk, Tahajuddin & Biswas, Santosh & Sardar, Tridip, 2022. "The impact of a power law-induced memory effect on the SARS-CoV-2 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Aldila, Dipo, 2020. "Analyzing the impact of the media campaign and rapid testing for COVID-19 as an optimal control problem in East Java, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Bing Li & Ziye Xiang, 2023. "Evolutionary Game of Vaccination Considering Both Epidemic and Economic Factors by Infectious Network of Complex Nodes," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    5. Kumar, Arjun & Dubey, Uma S. & Dubey, Balram, 2024. "The impact of social media advertisements and treatments on the dynamics of infectious diseases with optimal control strategies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 50-86.
    6. Chao Liu & Peng Chen & Qiyu Jia & Lora Cheung, 2022. "Effects of Media Coverage on Global Stability Analysis and Optimal Control of an Age-Structured Epidemic Model with Multi-Staged Progression," Mathematics, MDPI, vol. 10(15), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4484-:d:1270592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.