IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4478-d1269862.html
   My bibliography  Save this article

Optimal Bandwidth Selection Methods with Application to Wind Speed Distribution

Author

Listed:
  • Necla Gündüz

    (Department of Statistics, University of Gazi, Ankara 06560, Turkey)

  • Şule Karakoç

    (T.C. Culture and Tourism Ministry Presidency for Turks Abroad and Related Communities, Ankara 06520, Turkey)

Abstract

Accurate estimation of the unknown probability density functions of critical variables, such as wind speed—which plays a pivotal role in harnessing clean energy—is essential for various scientific and practical applications. This research conducts a comprehensive comparative analysis of seven distinct bandwidth calculation techniques across various normal distributions, using simulation as the evaluation method in the context of Kernel Density Estimation (KDE). This analysis includes the calculation of the optimal bandwidth and assessment of the performance of these methods with respect to Mean Squared Error (MSE), bias, and the optimal bandwidth value. The findings reveal that among the various bandwidth methods evaluated, the Bandwidth bandwidth-based Cross-Validation (BCV), especially for small sample sizes, consistently provides the closest result to the optimal bandwidth across most of the applied normal distributions. These results provide valuable insights into the selection of optimal bandwidths for accurate and reliable density estimation in the context of normal distributions. Another key aspect of this work is the extension of these methods to wind speed data in a specific region. Monthly wind speed kernel density estimates obtained using all seven bandwidth selection techniques show that Smoothed Cross-Validation (SCV) is suited for this type of real-world data.

Suggested Citation

  • Necla Gündüz & Şule Karakoç, 2023. "Optimal Bandwidth Selection Methods with Application to Wind Speed Distribution," Mathematics, MDPI, vol. 11(21), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4478-:d:1269862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    2. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    3. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    4. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    5. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    6. del Rio, Alejandro Quintela, 1996. "Comparison of bandwidth selectors in nonparametric regression under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 21(5), pages 563-580, May.
    7. Eibelshäuser, Steffen & Wilhelm, Sascha, 2017. "Markets Take Breaks: Dynamic Price Competition with Opening Hours," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168247, Verein für Socialpolitik / German Economic Association.
    8. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    9. Heiler, Siegfried & Feng, Yuanhua, 1995. "A simple root n bandwidth selector for nonparametric regression," Discussion Papers, Series II 286, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    10. T. Sclocco & M. Marzio, 2001. "A note on kernel density estimation for non-negative random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 67-79, January.
    11. Miśkiewicz, Janusz, 2016. "Improving quality of sample entropy estimation for continuous distribution probability functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 473-485.
    12. Jos'e E. Figueroa-L'opez & Cheng Li, 2016. "Optimal Kernel Estimation of Spot Volatility of Stochastic Differential Equations," Papers 1612.04507, arXiv.org.
    13. Wen-Ching Wang, 2018. "Setting up evaluate indicators for slope control engineering based on spatial clustering analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 921-939, September.
    14. Moreira, C. & Van Keilegom, I., 2013. "Bandwidth selection for kernel density estimation with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 107-123.
    15. J. M. Vilar & R. Cao & M. C. Ausin & C. Gonzalez-Fragueiro, 2009. "Nonparametric analysis of aggregate loss models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(2), pages 149-166.
    16. Emili Tortosa-Ausina, 2000. "Inefficient banks or inefficient assets," Working Papers 0005, Departament Empresa, Universitat Autònoma de Barcelona, revised Dec 2000.
    17. Sergio Porta & Emanuele Strano & Valentino Iacoviello & Roberto Messora & Vito Latora & Alessio Cardillo & Fahui Wang & Salvatore Scellato, 2009. "Street Centrality and Densities of Retail and Services in Bologna, Italy," Environment and Planning B, , vol. 36(3), pages 450-465, June.
    18. Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
    19. J. S. Marron & S. S. Chung, 2001. "Presentation of smoothers: the family approach," Computational Statistics, Springer, vol. 16(1), pages 195-207, March.
    20. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4478-:d:1269862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.