IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp473-485.html
   My bibliography  Save this article

Improving quality of sample entropy estimation for continuous distribution probability functions

Author

Listed:
  • Miśkiewicz, Janusz

Abstract

Entropy is a one of the key parameters characterizing state of system in statistical physics. Although, the entropy is defined for systems described by discrete and continuous probability distribution function (PDF), in numerous applications the sample entropy is estimated by a histogram, which, in fact, denotes that the continuous PDF is represented by a set of probabilities. Such a procedure may lead to ambiguities and even misinterpretation of the results. Within this paper, two possible general algorithms based on continuous PDF estimation are discussed in the application to the Shannon and Tsallis entropies. It is shown that the proposed algorithms may improve entropy estimation, particularly in the case of small data sets.

Suggested Citation

  • Miśkiewicz, Janusz, 2016. "Improving quality of sample entropy estimation for continuous distribution probability functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 473-485.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:473-485
    DOI: 10.1016/j.physa.2015.12.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011437
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alves, Alexandre & Dias, Alex G. & da Silva, Roberto, 2015. "Maximum Entropy Principle and the Higgs boson mass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 1-7.
    2. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N. & Pavlos, E.G. & Iliopoulos, A.C. & Sarafopoulos, D.V., 2014. "Universality of non-extensive Tsallis statistics and time series analysis: Theory and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 58-95.
    3. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    4. Guo, Yong-Feng & Tan, Jian-Guo, 2015. "Effects of Gaussian colored noise on time evolution of information entropy in a damped harmonic oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 691-697.
    5. Capurro, A. & Diambra, L. & Lorenzo, D. & Macadar, O. & Martin, M.T. & Mostaccio, C. & Plastino, A. & Rofman, E. & Torres, M.E. & Velluti, J., 1998. "Tsallis entropy and cortical dynamics: the analysis of EEG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 257(1), pages 149-155.
    6. Chapeau-Blondeau, François, 2014. "Tsallis entropy for assessing quantum correlation with Bell-type inequalities in EPR experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 204-215.
    7. Miśkiewicz, Janusz & Ausloos, Marcel, 2010. "Has the world economy reached its globalization limit?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 797-806.
    8. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    9. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    10. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    4. Aquino, Andre L.L. & Ramos, Heitor S. & Frery, Alejandro C. & Viana, Leonardo P. & Cavalcante, Tamer S.G. & Rosso, Osvaldo A., 2017. "Characterization of electric load with Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 277-284.
    5. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    6. Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    9. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    10. Jelena Stankevičiene & Tatjana Sviderske & Algita Miečinskiene, 2013. "Relationship between Economic Security and Country Risk Indicators in EU Baltic Sea Region Countries," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 1(3), pages 21-33.
    11. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    12. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    13. del Rio, Alejandro Quintela, 1996. "Comparison of bandwidth selectors in nonparametric regression under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 21(5), pages 563-580, May.
    14. Karakatsanis, L.P. & Pavlos, G.P. & Iliopoulos, A.C. & Pavlos, E.G. & Clark, P.M. & Duke, J.L. & Monos, D.S., 2018. "Assessing information content and interactive relationships of subgenomic DNA sequences of the MHC using complexity theory approaches based on the non-extensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 77-93.
    15. Argentiero, Amedeo & Bovi, Maurizio & Cerqueti, Roy, 2016. "Bayesian estimation and entropy for economic dynamic stochastic models: An exploration of overconsumption," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 143-157.
    16. Eibelshäuser, Steffen & Wilhelm, Sascha, 2017. "Markets Take Breaks: Dynamic Price Competition with Opening Hours," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168247, Verein für Socialpolitik / German Economic Association.
    17. Eugen Scarlat, 2016. "Connectivity - Based Clustering of GDP Time Series," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 23-38, March.
    18. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    19. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    20. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:473-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.