IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v16y2006i1p153-179.html
   My bibliography  Save this article

Utility Maximization In An Insider Influenced Market

Author

Listed:
  • Arturo Kohatsu‐Higa
  • Agnès Sulem

Abstract

We study a controlled stochastic system whose state is described by a stochastic differential equation with anticipating coefficients. This setting is used to model markets where insiders have some influence on the dynamics of prices. We give a characterization theorem for the optimal logarithmic portfolio of an investor with a different information flow from that of the insider. We provide explicit results in the partial information case that we extend in order to incorporate the enlargement of filtration techniques for markets with insiders. Finally, we consider a market with an insider who influences the drift of the underlying price asset process. This example gives a situation where it makes a difference for a small agent to acknowledge the existence of an insider in the market.

Suggested Citation

  • Arturo Kohatsu‐Higa & Agnès Sulem, 2006. "Utility Maximization In An Insider Influenced Market," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 153-179, January.
  • Handle: RePEc:bla:mathfi:v:16:y:2006:i:1:p:153-179
    DOI: 10.1111/j.1467-9965.2006.00266.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2006.00266.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2006.00266.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2015. "Non-Arbitrage Under Additional Information for Thin Semimartingale Models," Papers 1505.00997, arXiv.org.
    2. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    3. Chao Yu & Yuhan Cheng, 2023. "Malliavin Calculus and Its Application to Robust Optimal Investment for an Insider," Mathematics, MDPI, vol. 11(20), pages 1-38, October.
    4. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    5. D'Auria, Bernardo & García Martí, Dolores & Salmerón Garrido, José Antonio, 2017. "Optimal portfolio with insider information on the stochastic interest rate," DES - Working Papers. Statistics and Econometrics. WS 25819, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Ewald, Christian-Oliver & Xiao, Yajun, 2007. "Information : Price And Impact On General Welfare And Optimal Investment. An Anticipative Stochastic Differential Game Model," MPRA Paper 3301, University Library of Munich, Germany.
    7. Kohatsu-Higa, Arturo & Yamazato, Makoto, 2008. "Enlargement of filtrations with random times for processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1136-1158, July.
    8. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    9. Fenge Chen & Bing Li & Xingchun Peng, 2022. "Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 635-659, June.
    10. Peng, Xingchun & Wang, Wenyuan, 2016. "Optimal investment and risk control for an insurer under inside information," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 104-116.
    11. Albina Danilova & Michael Monoyios & Andrew Ng, 2009. "Optimal investment with inside information and parameter uncertainty," Papers 0911.3117, arXiv.org, revised Feb 2010.
    12. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    13. Aksamit, Anna & Choulli, Tahir & Deng, Jun & Jeanblanc, Monique, 2019. "No-arbitrage under additional information for thin semimartingale models," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3080-3115.
    14. Tahir Choulli & Jun Deng, 2014. "Structure conditions under progressively added information," Papers 1403.3459, arXiv.org, revised Dec 2018.
    15. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    16. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2017. "Optimal portfolios with anticipating information on the stochastic interest rate," Papers 1711.03642, arXiv.org, revised Jul 2024.
    17. O. Menoukeu Pamen & F. Proske & H. Binti Salleh, 2014. "Stochastic Differential Games in Insider Markets via Malliavin Calculus," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 302-343, January.
    18. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    19. Peng, Xingchun & Hu, Yijun, 2013. "Optimal proportional reinsurance and investment under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 416-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:16:y:2006:i:1:p:153-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.