IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4028-d1245664.html
   My bibliography  Save this article

A Min-Plus Algebra System Theory for Traffic Networks

Author

Listed:
  • Nadir Farhi

    (Cosys-Grettia, University Gustave Eiffel, F-77454 Marne-la-Vallée, France)

Abstract

In this article, we introduce a comprehensive system theory based on the min-plus algebra of 2 × 2 matrices of functions. This novel approach enables the algebraic construction of traffic networks and the analytical derivation of performance bounds for such networks. We use the term “traffic networks” or “congestion networks” to refer to networks where high densities of transported particles lead to flow drops, as commonly observed in road networks. Initially, we present a model for a segment or section of a link within the network and demonstrate that the dynamics can be expressed linearly within the min-plus algebra. Subsequently, we formulate the linear system using the min-plus algebra of 2 × 2 matrices of functions. By deriving the impulse response of the system, we establish its interpretation as a service guarantee, considering the traffic system as a server. Furthermore, we define a concatenation operator that allows for the combination of two segment systems, demonstrating that multiple segments can be algebraically linked to form a larger network. We also introduce a feedback operator within this system theory, enabling the modeling of closed systems. Lastly, we extend this theoretical framework to encompass two-dimensional systems, where nodes within the network are also taken into account in addition to the links. We present a model for a controlled node and provide insights into other potential two-dimensional models, along with directions for further extensions and research.

Suggested Citation

  • Nadir Farhi, 2023. "A Min-Plus Algebra System Theory for Traffic Networks," Mathematics, MDPI, vol. 11(19), pages 1-23, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4028-:d:1245664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    2. Denos C. Gazis & Robert Herman & Renfrey B. Potts, 1959. "Car-Following Theory of Steady-State Traffic Flow," Operations Research, INFORMS, vol. 7(4), pages 499-505, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    3. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    4. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    5. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    6. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    7. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    8. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    9. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    10. Yunze Wang & Ranran Xu & Ke Zhang, 2022. "A Car-Following Model for Mixed Traffic Flows in Intelligent Connected Vehicle Environment Considering Driver Response Characteristics," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    13. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    15. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    16. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    18. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    19. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    20. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4028-:d:1245664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.