IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3967-d1242667.html
   My bibliography  Save this article

Control for Bioethanol Production in a Pressure Swing Adsorption Process Using an Artificial Neural Network

Author

Listed:
  • Moises Ramos-Martinez

    (Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico)

  • Carlos Alberto Torres-Cantero

    (Tecnológico Nacional de Mexico Campus Colima, Av. Tecnológico # 1, Col. Liberación, Villa de Álvarez 28976, Colima, Mexico
    Facultad de Ingeniería Mecánica y Eléctrica de la Universidad de Colima, Carretera Colima-Coquimatlan Km 9, Valle de las Huertas, Coquimatlán 28400, Colima, Mexico)

  • Gerardo Ortiz-Torres

    (Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico)

  • Felipe D. J. Sorcia-Vázquez

    (Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico)

  • Himer Avila-George

    (Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico)

  • Ricardo Eliú Lozoya-Ponce

    (División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México campus Chihuahua, Chihuahua 31310, Chih, Mexico)

  • Rodolfo A. Vargas-Méndez

    (Department of Electronic Engineering, CENIDET, Cuernavaca 62490, Morelos, Mexico)

  • Erasmo M. Renteria-Vargas

    (Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico)

  • Jesse Y. Rumbo-Morales

    (Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico)

Abstract

This paper introduces a new approach to controlling Pressure Swing Adsorption (PSA) using a neural network controller based on a Model Predictive Control (MPC) process. We use a Hammerstein–Wiener (HW) model representing the real PSA process data. Then, we design an MPC-controlled model based on the HW model to maintain the bioethanol purity near 99 % molar fraction. This work proposes an Artificial Neural Network (ANN) that captures the dynamics of the PSA model controlled by the MPC strategy. Both controllers are validated using the HW model of the PSA process, showing great performance and robustness against disturbances. The results show that we can follow the desired trajectory and attenuate disturbances, achieving the purity of bioethanol at a molar fraction value of 0.99 using the ANN based on the MPC strategy with 94 % of fit in the control signal and a 97 % fit in the purity signal, so we can conclude that our ANN can be used to attenuate disturbances and maintain purity in the PSA process.

Suggested Citation

  • Moises Ramos-Martinez & Carlos Alberto Torres-Cantero & Gerardo Ortiz-Torres & Felipe D. J. Sorcia-Vázquez & Himer Avila-George & Ricardo Eliú Lozoya-Ponce & Rodolfo A. Vargas-Méndez & Erasmo M. Rente, 2023. "Control for Bioethanol Production in a Pressure Swing Adsorption Process Using an Artificial Neural Network," Mathematics, MDPI, vol. 11(18), pages 1-26, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3967-:d:1242667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Małgorzata Smuga-Kogut & Tomasz Kogut & Roksana Markiewicz & Adam Słowik, 2021. "Use of Machine Learning Methods for Predicting Amount of Bioethanol Obtained from Lignocellulosic Biomass with the Use of Ionic Liquids for Pretreatment," Energies, MDPI, vol. 14(1), pages 1-16, January.
    2. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rumbo-Morales, Jesse Y. & Ortiz-Torres, Gerardo & Sarmiento-Bustos, Estela & Rosales, Antonio Márquez & Calixto-Rodriguez, Manuela & Sorcia-Vázquez, Felipe D.J. & Pérez-Vidal, Alan F. & Rodríguez-Cerd, 2024. "Purification and production of bio-ethanol through the control of a pressure swing adsorption plant," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshid Yakhshilikov & Marco Cavana & Pierluigi Leone, 2024. "A Review of the Energy System and Transport Sector in Uzbekistan in View of Future Hydrogen Uptake," Energies, MDPI, vol. 17(16), pages 1-30, August.
    2. Naveed, Muhammad Hamza & Khan, Muhammad Nouman Aslam & Mukarram, Muhammad & Naqvi, Salman Raza & Abdullah, Abdullah & Haq, Zeeshan Ul & Ullah, Hafeez & Mohamadi, Hamad Al, 2024. "Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    4. Qingqing Liu & Nianping Li & Yongga A & Jiaojiao Duan & Wenyun Yan, 2021. "The Evaluation of the Corrosion Rates of Alloys Applied to the Heating Tower Heat Pump (HTHP) by Machine Learning," Energies, MDPI, vol. 14(7), pages 1-13, April.
    5. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    6. Hossein Ameli & Goran Strbac & Danny Pudjianto & Mohammad Taghi Ameli, 2024. "A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives," Energies, MDPI, vol. 17(7), pages 1-29, April.
    7. Niaze, Ambereen A. & Sahu, Rohit & Sunkara, Mahendra K. & Upadhyayula, Sreedevi, 2023. "Model construction and optimization for raising the concentration of industrial bioethanol production by using a data-driven ANN model," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3967-:d:1242667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.