IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3944-d1241632.html
   My bibliography  Save this article

Exploring Limit Cycle Bifurcations in the Presence of a Generalized Heteroclinic Loop

Author

Listed:
  • Erli Zhang

    (School of Statistics and Big Data, Zhengzhou College of Finance and Economics, Zhengzhou 450044, China)

  • Stanford Shateyi

    (Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa)

Abstract

This work revisits the number of limit cycles (LCs) in a piecewise smooth system of Hamiltonian with a heteroclinic loop generalization, subjected to perturbed functions through polynomials of degree m . By analyzing the asymptotic expansion (AE) of the Melnikov function with first-order M ( h ) near the generalized heteroclinic loop (HL), we utilize the expansions of the corresponding generators. This approach allows us to establish both lower and upper bounds for the quantity of limit cycles in the perturbed system. Our analysis involves a combination of expansion techniques, derivations, and divisions to derive these findings.

Suggested Citation

  • Erli Zhang & Stanford Shateyi, 2023. "Exploring Limit Cycle Bifurcations in the Presence of a Generalized Heteroclinic Loop," Mathematics, MDPI, vol. 11(18), pages 1-12, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3944-:d:1241632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Feng & Han, Maoan, 2012. "Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 454-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yanqin & Han, Maoan & Constantinescu, Dana, 2016. "On the limit cycles of perturbed discontinuous planar systems with 4 switching lines," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 158-177.
    2. Liu, Yuanyuan & Xiong, Yanqin, 2014. "Limit cycles for perturbing a piecewise linear Hamiltonian system with one or two saddles," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 86-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3944-:d:1241632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.