IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v83y2016icp158-177.html
   My bibliography  Save this article

On the limit cycles of perturbed discontinuous planar systems with 4 switching lines

Author

Listed:
  • Wang, Yanqin
  • Han, Maoan
  • Constantinescu, Dana

Abstract

Limit cycle bifurcations for a class of perturbed planar piecewise smooth systems with 4 switching lines are investigated. The expressions of the first order Melnikov function are established when the unperturbed system has a compound global center, a compound homoclinic loop, a compound 2-polycycle, a compound 3-polycycle or a compound 4-polycycle, respectively. Using Melnikov’s method, we obtain lower bounds of the maximal number of limit cycles for the above five different cases. Further, we derive upper bounds of the number of limit cycles for the later four different cases. Finally, we give a numerical example to verify the theory results.

Suggested Citation

  • Wang, Yanqin & Han, Maoan & Constantinescu, Dana, 2016. "On the limit cycles of perturbed discontinuous planar systems with 4 switching lines," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 158-177.
  • Handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:158-177
    DOI: 10.1016/j.chaos.2015.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915004063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buzzi, C.A. & Llibre, J. & Medrado, J.C., 2011. "On the limit cycles of a class of piecewise linear differential systems in ℝ4 with two zones," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 533-539.
    2. Liang, Feng & Han, Maoan, 2012. "Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 454-464.
    3. Huanhuan Tian & Maoan Han, 2014. "Limit Cycle Bifurcations by Perturbing a Compound Loop with a Cusp and a Nilpotent Saddle," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jihua, 2021. "On the number of limit cycles of a pendulum-like equation with two switching lines," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Liang, Feng & Romanovski, Valery G. & Zhang, Daoxiang, 2018. "Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 18-34.
    3. Yang, Jihua, 2020. "Limit cycles appearing from the perturbation of differential systems with multiple switching curves," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Chen, Ting & Huang, Lihong & Huang, Wentao & Li, Wenjie, 2017. "Bi-center conditions and local bifurcation of critical periods in a switching Z2 equivariant cubic system," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 157-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yuanyuan & Xiong, Yanqin, 2014. "Limit cycles for perturbing a piecewise linear Hamiltonian system with one or two saddles," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 86-95.
    2. Erli Zhang & Stanford Shateyi, 2023. "Exploring Limit Cycle Bifurcations in the Presence of a Generalized Heteroclinic Loop," Mathematics, MDPI, vol. 11(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:83:y:2016:i:c:p:158-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.