IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v66y2014icp86-95.html
   My bibliography  Save this article

Limit cycles for perturbing a piecewise linear Hamiltonian system with one or two saddles

Author

Listed:
  • Liu, Yuanyuan
  • Xiong, Yanqin

Abstract

We study bifurcations of limit cycles arising after perturbations of linear piecewise Hamiltonian systems. In this paper we find bounds for the numbers of limit cycles for several families of which phase portraits were classified in Xiong and Han (2013) [14].

Suggested Citation

  • Liu, Yuanyuan & Xiong, Yanqin, 2014. "Limit cycles for perturbing a piecewise linear Hamiltonian system with one or two saddles," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 86-95.
  • Handle: RePEc:eee:chsofr:v:66:y:2014:i:c:p:86-95
    DOI: 10.1016/j.chaos.2014.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914000897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Feng & Han, Maoan, 2012. "Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 454-464.
    2. Yanqin Xiong & Maoan Han, 2013. "Bifurcation of Limit Cycles by Perturbing a Piecewise Linear Hamiltonian System," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Feng & Romanovski, Valery G. & Zhang, Daoxiang, 2018. "Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 18-34.
    2. Zhang, Huihui & Xiong, Yanqin, 2023. "Hopf bifurcations by perturbing a class of reversible quadratic systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yanqin & Han, Maoan & Constantinescu, Dana, 2016. "On the limit cycles of perturbed discontinuous planar systems with 4 switching lines," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 158-177.
    2. Erli Zhang & Stanford Shateyi, 2023. "Exploring Limit Cycle Bifurcations in the Presence of a Generalized Heteroclinic Loop," Mathematics, MDPI, vol. 11(18), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:66:y:2014:i:c:p:86-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.