IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3667-d1224941.html
   My bibliography  Save this article

Applying Fuzzy Time Series for Developing Forecasting Electricity Demand Models

Author

Listed:
  • José Rubio-León

    (Escuela de Computación e Informática, Universidad Bernardo O’Higgins, Av. Viel 1497, Santiago 8320000, Chile)

  • José Rubio-Cienfuegos

    (Departamento de Ingeniería Eléctrica, Universidad de Chile, Av. Tupper 2007, Santiago 8320000, Chile)

  • Cristian Vidal-Silva

    (School of Videogame Development and Virtual Reality Engineering, Faculty of Engineering, University of Talca, Talca 3480260, Chile)

  • Jesennia Cárdenas-Cobo

    (Facultad de Ciencias e Ingenierías, Universidad Estatal de Milagro, Milagro 091706, Ecuador)

  • Vannessa Duarte

    (Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1781421, Chile)

Abstract

Managing the energy produced to support industries and various human activities is highly relevant nowadays. Companies in the electricity markets of each country analyze the generation, transmission, and distribution of energy to meet the energy needs of various sectors and industries. Electrical markets emerge to economically analyze everything related to energy generation, transmission, and distribution. The demand for electric energy is crucial in determining the amount of energy needed to meet the requirements of an individual or a group of consumers. But energy consumption often exhibits random behavior, making it challenging to develop accurate prediction models. The analysis and understanding of energy consumption are essential for energy generation. Developing models to forecast energy demand is necessary for improving generation and consumption management. Given the energy variable’s stochastic nature, this work’s main objective is to explore different configurations and parameters using specialized libraries in Python and Google Collaboratory. The aim is to develop a model for forecasting electric power demand using fuzzy logic. This study compares the proposed solution with previously developed machine learning systems to create a highly accurate forecast model for demand values. The data used in this work was collected by the European Network of Transmission System Operators of Electricity (ENTSO-E) from 2015 to 2019. As a significant outcome, this research presents a model surpassing previous solutions’ predictive performance. Using Mean Absolute Percentage Error (MAPE), the results demonstrate the significance of set weighting for achieving excellent performance in fuzzy models. This is because having more relevant fuzzy sets allows for inference rules and, subsequently, more accurate demand forecasts. The results also allow applying the solution model to other forecast scenarios with similar contexts.

Suggested Citation

  • José Rubio-León & José Rubio-Cienfuegos & Cristian Vidal-Silva & Jesennia Cárdenas-Cobo & Vannessa Duarte, 2023. "Applying Fuzzy Time Series for Developing Forecasting Electricity Demand Models," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3667-:d:1224941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koot, Martijn & Wijnhoven, Fons, 2021. "Usage impact on data center electricity needs: A system dynamic forecasting model," Applied Energy, Elsevier, vol. 291(C).
    2. Moral-Carcedo, Julián & Pérez-García, Julián, 2019. "Time of day effects of temperature and daylight on short term electricity load," Energy, Elsevier, vol. 174(C), pages 169-183.
    3. Severiano, Carlos A. & Silva, Petrônio Cândido de Lima e & Weiss Cohen, Miri & Guimarães, Frederico Gadelha, 2021. "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, Elsevier, vol. 171(C), pages 764-783.
    4. Wang, Shuguang & Sun, Luang & Iqbal, Sajid, 2022. "Green financing role on renewable energy dependence and energy transition in E7 economies," Renewable Energy, Elsevier, vol. 200(C), pages 1561-1572.
    5. Niu, Zhibin & Wu, Junqi & Liu, Xiufeng & Huang, Lizhen & Nielsen, Per Sieverts, 2021. "Understanding energy demand behaviors through spatio-temporal smart meter data analysis," Energy, Elsevier, vol. 226(C).
    6. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    2. Chenglin Hu & Junsong Bian & Daozhi Zhao & Longfei He & Fangqi Dong, 2024. "Optimal Dynamic Production Planning for Supply Network with Random External and Internal Demands," Mathematics, MDPI, vol. 12(17), pages 1-33, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    2. Haixia Gu & Gaojun Liu & Jixue Li & Hongyun Xie & Hanguan Wen, 2023. "A Framework Based on Deep Learning for Predicting Multiple Safety-Critical Parameter Trends in Nuclear Power Plants," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    3. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    4. Li, Wenxue & Liu, Fei, 2023. "Financing green resource generation in sub-saharan Africa: Does financial integration matter?," Resources Policy, Elsevier, vol. 85(PB).
    5. Sampene, Agyemang Kwasi & Li, Cai & Wiredu, John, 2024. "An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance," Energy Policy, Elsevier, vol. 187(C).
    6. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    7. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    8. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    9. Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.
    10. Zhong, Jiehua & Kan, Ho Yin, 2024. "The impact of government policy, natural resources and ecological innovations on energy transition and environmental sustainability: Insights from China," Resources Policy, Elsevier, vol. 89(C).
    11. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    12. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    13. Carrelhas, A.A.D. & Gato, L.M.C. & Morais, F.J.F., 2024. "Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions," Renewable Energy, Elsevier, vol. 220(C).
    14. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
    15. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    17. Santiago, I. & Moreno-Munoz, A. & Quintero-Jiménez, P. & Garcia-Torres, F. & Gonzalez-Redondo, M.J., 2021. "Electricity demand during pandemic times: The case of the COVID-19 in Spain," Energy Policy, Elsevier, vol. 148(PA).
    18. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    19. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    20. Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3667-:d:1224941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.