IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3586-d1220439.html
   My bibliography  Save this article

Two-Threshold-Variable Integer-Valued Autoregressive Model

Author

Listed:
  • Jiayue Zhang

    (School of Mathematics, Jilin University, Changchun 130012, China)

  • Fukang Zhu

    (School of Mathematics, Jilin University, Changchun 130012, China)

  • Huaping Chen

    (School of Mathematics and Statistics, Henan University, Kaifeng 475004, China)

Abstract

In the past, most threshold models considered a single threshold variable. However, for some practical applications, models with two threshold variables may be needed. In this paper, we propose a two-threshold-variable integer-valued autoregressive model based on the binomial thinning operator and discuss some of its basic properties, including the mean, variance, strict stationarity, and ergodicity. We consider the conditional least squares (CLS) estimation and discuss the asymptotic normality of the CLS estimator under the known and unknown threshold values. The performances of the CLS estimator are compared via simulation studies. In addition, two real data sets are considered to underline the superior performance of the proposed model.

Suggested Citation

  • Jiayue Zhang & Fukang Zhu & Huaping Chen, 2023. "Two-Threshold-Variable Integer-Valued Autoregressive Model," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3586-:d:1220439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    2. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    3. Maria Eduarda Silva & Vera Lúcia Oliveira, 2005. "Difference Equations for the Higher Order Moments and Cumulants of the INAR(p) Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 17-36, January.
    4. Boero, Gianna & Marrocu, Emanuela, 2004. "The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts," International Journal of Forecasting, Elsevier, vol. 20(2), pages 305-320.
    5. Chao Wang & Heng Liu & Jian-Feng Yao & Richard A. Davis & Wai Keung Li, 2014. "Self-Excited Threshold Poisson Autoregression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 777-787, June.
    6. Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
    7. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixuan Fan & Jianhua Cheng & Dehui Wang, 2024. "A new integer-valued threshold autoregressive process based on modified negative binomial operator driven by explanatory variables," Statistical Papers, Springer, vol. 65(9), pages 5873-5901, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    2. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    3. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    4. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
    5. Han Li & Kai Yang & Dehui Wang, 2017. "Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes," Computational Statistics, Springer, vol. 32(4), pages 1597-1620, December.
    6. Gianna Boero & Emanuela Marrocu, 2005. "Evaluating non-linear models on point and interval forecasts: an application with exchange rates," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(232), pages 91-120.
    7. Isabel Silva & M. Eduarda Silva & Isabel Pereira & Nélia Silva, 2005. "Replicated INAR(1) Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(4), pages 517-542, December.
    8. Han Li & Kai Yang & Shishun Zhao & Dehui Wang, 2018. "First-order random coefficients integer-valued threshold autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 305-331, July.
    9. van Dijk, Dick & Hans Franses, Philip & Peter Boswijk, H., 2007. "Absorption of shocks in nonlinear autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4206-4226, May.
    10. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    11. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    12. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.
    13. Jon Michel, 2020. "The Limiting Distribution of a Non‐Stationary Integer Valued GARCH(1,1) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 351-356, March.
    14. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    15. Marian Vavra, 2012. "A Note on the Finite Sample Properties of the CLS Method of TAR Models," Birkbeck Working Papers in Economics and Finance 1206, Birkbeck, Department of Economics, Mathematics & Statistics.
    16. Simon Gilchrist & John C. Williams, 2000. "Putty-Clay and Investment: A Business Cycle Analysis," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 928-960, October.
    17. Filippo Altissimo & Giovanni L. Violante, 2001. "The non-linear dynamics of output and unemployment in the U.S," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 461-486.
    18. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    19. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    20. Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3586-:d:1220439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.