IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i9d10.1140_epjb_e2016-70337-6.html
   My bibliography  Save this article

Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network

Author

Listed:
  • Mingwen Zheng

    (School of Science, Beijing University of Posts and Telecommunications
    School of Science, Shandong University of Technology)

  • Lixiang Li

    (Information Security Center, State Key Laboratory of Networking and Switching Technology, National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications)

  • Haipeng Peng

    (Information Security Center, State Key Laboratory of Networking and Switching Technology, National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications)

  • Jinghua Xiao

    (School of Science, Beijing University of Posts and Telecommunications)

  • Yixian Yang

    (Information Security Center, State Key Laboratory of Networking and Switching Technology, National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications)

  • Hui Zhao

    (School of Science, Beijing University of Posts and Telecommunications)

Abstract

In this paper, we study the finite-time stability and synchronization problem of a class of memristor-based fractional-order Cohen-Grossberg neural network (MFCGNN) with the fractional order α ∈ (0,1 ]. We utilize the set-valued map and Filippov differential inclusion to treat MFCGNN because it has discontinuous right-hand sides. By using the definition of Caputo fractional-order derivative, the definitions of finite-time stability and synchronization, Gronwall’s inequality and linear feedback controller, two new sufficient conditions are derived to ensure the finite-time stability of our proposed MFCGNN and achieve the finite-time synchronization of drive-response systems which are constituted by MFCGNNs. Finally, two numerical simulations are presented to verify the rightness of our proposed theorems.

Suggested Citation

  • Mingwen Zheng & Lixiang Li & Haipeng Peng & Jinghua Xiao & Yixian Yang & Hui Zhao, 2016. "Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-11, September.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:9:d:10.1140_epjb_e2016-70337-6
    DOI: 10.1140/epjb/e2016-70337-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-70337-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-70337-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    3. Boaretto, B.R.R. & Budzinski, R.C. & Prado, T.L. & Kurths, J. & Lopes, S.R., 2018. "Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 126-138.
    4. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    5. Jun Guo & Yanchao Shi & Weihua Luo & Yanzhao Cheng & Shengye Wang, 2023. "Adaptive Global Synchronization for a Class of Quaternion-Valued Cohen-Grossberg Neural Networks with Known or Unknown Parameters," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
    6. Wang, Shasha & Jian, Jigui, 2023. "Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:9:d:10.1140_epjb_e2016-70337-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.