IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3549-d1218757.html
   My bibliography  Save this article

Non-Convex Optimization: Using Preconditioning Matrices for Optimally Improving Variable Bounds in Linear Relaxations

Author

Listed:
  • Victor Reyes

    (Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago 8370068, Chile)

  • Ignacio Araya

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile)

Abstract

The performance of branch-and-bound algorithms for solving non-convex optimization problems greatly depends on convex relaxation techniques. They generate convex regions which are used for improving the bounds of variable domains. In particular, convex polyhedral regions can be represented by a linear system A . x = b . Then, bounds of variable domains can be improved by minimizing and maximizing variables in the linear system. Reducing or contracting optimally variable domains in linear systems, however, is an expensive task. It requires solving up to two linear programs for each variable (one for each variable bound). Suboptimal strategies, such as preconditioning, may offer satisfactory approximations of the optimal reduction at a lower cost. In non-square linear systems, a preconditioner P can be chosen such that P . A is close to a diagonal matrix. Thus, the projection of the equivalent system P . A . x = P . b over x , by using an iterative method such as Gauss–Seidel, can significantly improve the contraction. In this paper, we show how to generate an optimal preconditioner, i.e., a preconditioner that helps the Gauss–Seidel method to optimally reduce the variable domains. Despite the cost of generating the preconditioner, it can be re-used in sub-regions of the search space without losing too much effectiveness. Experimental results show that, when used for reducing domains in non-square linear systems, the approach is significantly more effective than Gauss-based elimination techniques. Finally, the approach also shows promising results when used as a component of a solver for non-convex optimization problems.

Suggested Citation

  • Victor Reyes & Ignacio Araya, 2023. "Non-Convex Optimization: Using Preconditioning Matrices for Optimally Improving Variable Bounds in Linear Relaxations," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3549-:d:1218757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivo Nowak & Stefan Vigerske, 2008. "LaGO: a (heuristic) Branch and Cut algorithm for nonconvex MINLPs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 127-138, June.
    2. Ignacio Araya & Victor Reyes, 2016. "Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects," Journal of Global Optimization, Springer, vol. 65(4), pages 837-866, August.
    3. Ferenc Domes & Arnold Neumaier, 2012. "Rigorous filtering using linear relaxations," Journal of Global Optimization, Springer, vol. 53(3), pages 441-473, July.
    4. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    5. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    2. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    3. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    4. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    5. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    6. Pia Domschke & Bjorn Geißler & Oliver Kolb & Jens Lang & Alexander Martin & Antonio Morsi, 2011. "Combination of Nonlinear and Linear Optimization of Transient Gas Networks," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 605-617, November.
    7. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).
    8. Iosif Pappas & Nikolaos A. Diangelakis & Efstratios N. Pistikopoulos, 2021. "The exact solution of multiparametric quadratically constrained quadratic programming problems," Journal of Global Optimization, Springer, vol. 79(1), pages 59-85, January.
    9. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    10. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    11. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.
    12. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    13. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    14. Pavlo Muts & Ivo Nowak & Eligius M. T. Hendrix, 2020. "The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming," Journal of Global Optimization, Springer, vol. 77(1), pages 75-96, May.
    15. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.
    16. Zhou Wei & M. Ali, 2015. "Convex mixed integer nonlinear programming problems and an outer approximation algorithm," Journal of Global Optimization, Springer, vol. 63(2), pages 213-227, October.
    17. Huang, Xiaojian & Lu, Pei & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Liang, Yingzong & Wang, Chao & Chen, Ying, 2020. "Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle," Energy, Elsevier, vol. 195(C).
    18. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    19. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    20. Falk M. Hante & Martin Schmidt, 2019. "Complementarity-based nonlinear programming techniques for optimal mixing in gas networks," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 299-323, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3549-:d:1218757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.