IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3521-d1217535.html
   My bibliography  Save this article

Optimization Models for the Vehicle Routing Problem under Disruptions

Author

Listed:
  • Kai Huang

    (DeGroote School of Business, McMaster University, Hamilton, ON L8S 4M4, Canada)

  • Michael Xu

    (School of Computational Science and Engineering, McMaster University, Hamilton, ON L8S 4M4, Canada)

Abstract

In this paper, we study the role of disruptions in the multi-period vehicle routing problem (VRP), which naturally arises in humanitarian logistics and military applications. We assume that at any time during the delivery phase, each vehicle could have chance to be disrupted. When a disruption happens, vehicles will be unable to continue their journeys and supplies will be unable to be delivered. We model the occurrence of disruption as a given probability and consider the multi-period expected delivery. Our objective is to either minimize the total travel cost or maximize the demand fulfillment, depending on the supply quantity. This problem is denoted as the multi-period vehicle routing problem with disruption (VRPMD). VRPMD does not deal with disruptions in real-time and is more focused on the long-term performance of a single routing plan. We first prove that the proposed VRPMD problems are NP-hard. We then present some analytical properties related to the optimal solutions to these problems. We show that Dror and Trudeau’s property does not apply in our problem setting. Nevertheless, a generalization of Dror and Trudeau’s property holds. Finally, we present efficient heuristic algorithms to solve these problems and show the effectiveness of the proposed models and algorithms through numerical studies.

Suggested Citation

  • Kai Huang & Michael Xu, 2023. "Optimization Models for the Vehicle Routing Problem under Disruptions," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3521-:d:1217535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilbert Laporte & François Louveaux & Hélène Mercure, 1992. "The Vehicle Routing Problem with Stochastic Travel Times," Transportation Science, INFORMS, vol. 26(3), pages 161-170, August.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    3. Michel Gendreau & Gilbert Laporte & René Séguin, 1995. "An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers," Transportation Science, INFORMS, vol. 29(2), pages 143-155, May.
    4. Stewart, William R. & Golden, Bruce L., 1983. "Stochastic vehicle routing: A comprehensive approach," European Journal of Operational Research, Elsevier, vol. 14(4), pages 371-385, December.
    5. Moshe Dror & Pierre Trudeau, 1990. "Split delivery routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 383-402, June.
    6. Sebastián Muñoz-Herrera & Karol Suchan, 2022. "Local Optima Network Analysis of Multi-Attribute Vehicle Routing Problems," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    7. Moshe Dror & Pierre Trudeau, 1989. "Savings by Split Delivery Routing," Transportation Science, INFORMS, vol. 23(2), pages 141-145, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Insani & Sona Taheri & Mali Abdollahian, 2024. "A Mathematical Model for Integrated Disaster Relief Operations in Early-Stage Flood Scenarios," Mathematics, MDPI, vol. 12(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    2. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    3. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    4. Chen, Lijian & Chiang, Wen-Chyuan & Russell, Robert & Chen, Jun & Sun, Dengfeng, 2018. "The probabilistic vehicle routing problem with service guarantees," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 149-164.
    5. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    6. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    7. Leonardo Berbotto & Sergio García & Francisco Nogales, 2014. "A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem," Annals of Operations Research, Springer, vol. 222(1), pages 153-173, November.
    8. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    9. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    10. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Hernan Caceres & Rajan Batta & Qing He, 2017. "School Bus Routing with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 51(4), pages 1349-1364, November.
    12. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    13. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    14. Karels, Vincent C.G. & Rei, Walter & Veelenturf, Lucas P. & Van Woensel, Tom, 2024. "A vehicle routing problem with multiple service agreements," European Journal of Operational Research, Elsevier, vol. 313(1), pages 129-145.
    15. Jianli Shi & Jin Zhang & Kun Wang & Xin Fang, 2018. "Particle Swarm Optimization for Split Delivery Vehicle Routing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-42, April.
    16. Zamar, David S. & Gopaluni, Bhushan & Sokhansanj, Shahab, 2017. "Optimization of sawmill residues collection for bioenergy production," Applied Energy, Elsevier, vol. 202(C), pages 487-495.
    17. Abdelkader Sbihi & Richard W. Eglese, 2007. "The Relationship between Vehicle Routing & Scheduling and Green Logistics - A Literature Survey," Working Papers hal-00644133, HAL.
    18. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    19. Shukla, Nagesh & Choudhary, A.K. & Prakash, P.K.S. & Fernandes, K.J. & Tiwari, M.K., 2013. "Algorithm portfolios for logistics optimization considering stochastic demands and mobility allowance," International Journal of Production Economics, Elsevier, vol. 141(1), pages 146-166.
    20. Saman Eskandarzadeh & Reza Tavakkoli-Moghaddam & Amir Azaron, 2009. "An extension of the relaxation algorithm for solving a special case of capacitated arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 214-234, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3521-:d:1217535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.