IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3512-d1217108.html
   My bibliography  Save this article

Toward Effective Uncertainty Management in Decision-Making Models Based on Type-2 Fuzzy TOPSIS

Author

Listed:
  • Elissa Nadia Madi

    (Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Besut 22200, Malaysia)

  • Zahrahtul Amani Zakaria

    (Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Besut 22200, Malaysia)

  • Aceng Sambas

    (Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Besut 22200, Malaysia
    Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, Indonesia)

  • Sukono

    (Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia)

Abstract

Over the past century, there has been a dramatic increasing interest in the multi-criteria group decision-making (MCGDM) technique, with a considerable amount of studies published regarding it. One of the well-known approaches in the MCGDM paradigm is Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The integration of the TOPSIS method with fuzzy set theory has proven to be successful in various applications. Recently, a wide array of publications has proposed implementing a type-2 fuzzy set with TOPSIS. However, the additional degree of uncertainty represented by type 2 has largely been ignored, especially in a few specific mathematical operations in the model. We propose constructing interval type-2 fuzzy membership functions (IT2 MFs) using interval-based data gathered from a survey, where this is used to generate a new scale to represent ratings for each alternative. This procedure utilized all information gathered from decision makers. In addition, we present a complete algorithm for TOPSIS based on IT2 fuzzy sets (IT2 FSs) which preserve the interval-based form output. The output in the form of intervals offers decision makers (DMs) with more detailed information, enabling them to make more nuanced decisions. This can include cautious decisions when intervals are wider and overlapping. Although understanding the exact meaning of these intervals and their widths in a decision-making context is challenging, this paper introduces a systematic method for connecting input uncertainty to output uncertainty in the TOPSIS technique. This approach establishes a solid foundation for future research. Thus far, no other researchers have suggested a data-driven method that combines TOPSIS with fuzzification and provides intervals as the final output.

Suggested Citation

  • Elissa Nadia Madi & Zahrahtul Amani Zakaria & Aceng Sambas & Sukono, 2023. "Toward Effective Uncertainty Management in Decision-Making Models Based on Type-2 Fuzzy TOPSIS," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3512-:d:1217108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Ziemba & Marta Szaja, 2023. "Fuzzy Decision-Making Model for Solar Photovoltaic Panel Evaluation," Energies, MDPI, vol. 16(13), pages 1-19, July.
    2. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Yao & Donghua Yu & Yan Song & Hao Yao & Yuzhen Hu & Benhai Guo, 2018. "Dry Bulk Carrier Investment Selection through a Dual Group Decision Fusing Mechanism in the Green Supply Chain," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    4. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
    5. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    6. Alaa Alden Al Mohamed & Sobhi Al Mohamed, 2023. "Application of fuzzy group decision-making selecting green supplier: a case study of the manufacture of natural laurel soap," Future Business Journal, Springer, vol. 9(1), pages 1-20, December.
    7. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    8. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    9. Deveci, Muhammet & Pamucar, Dragan & Gokasar, Ilgin & Isik, Mehtap & Coffman, D'Maris, 2022. "Fuzzy Einstein WASPAS approach for the economic and societal dynamics of the climate change mitigation strategies in urban mobility planning," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 1-17.
    10. Imane Tronnebati & Manal El Yadari & Fouad Jawab, 2022. "A Review of Green Supplier Evaluation and Selection Issues Using MCDM, MP and AI Models," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    11. Torky Althaqafi, 2023. "Environmental and Social Factors in Supplier Assessment: Fuzzy-Based Green Supplier Selection," Sustainability, MDPI, vol. 15(21), pages 1-17, November.
    12. Xiaohui Zhang & Shufeng Tang & Xinhua Liu & Reza Malekian & Zhixiong Li, 2019. "A Novel Multi-Agent-Based Collaborative Virtual Manufacturing Environment Integrated with Edge Computing Technique," Energies, MDPI, vol. 12(14), pages 1-19, July.
    13. Seyed Mahmoud Zanjirchi & Mina Rezaeian Abrishami & Negar Jalilian, 2019. "Four decades of fuzzy sets theory in operations management: application of life-cycle, bibliometrics and content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1289-1309, June.
    14. Agnieszka Konys, 2019. "Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base," Sustainability, MDPI, vol. 11(15), pages 1-41, August.
    15. van der Rhee, Bo & Verma, Rohit & Plaschka, Gerhard, 2009. "Understanding trade-offs in the supplier selection process: The role of flexibility, delivery, and value-added services/support," International Journal of Production Economics, Elsevier, vol. 120(1), pages 30-41, July.
    16. Guertler, Benjamin & Spinler, Stefan, 2015. "When does operational risk cause supply chain enterprises to tip? A simulation of intra-organizational dynamics," Omega, Elsevier, vol. 57(PA), pages 54-69.
    17. Salah Alden Ghasimi & Rizauddin Ramli & Nizaroyani Saibani & Khashayar Danesh Narooei, 2018. "An uncertain mathematical model to maximize profit of the defective goods supply chain by selecting appropriate suppliers," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1219-1234, August.
    18. S. Mostafa Mokhtari & Hamid Alinejad-Rokny & Hossein Jalalifar, 2014. "Selection of the best well control system by using fuzzy multiple-attribute decision-making methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 1105-1121, May.
    19. Ahmad Yusuf Adhami & Syed Mohd Muneeb & Mohammad Asim Nomani, 2017. "A multilevel decision making model for the supplier selection problem in a fuzzy situation," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(4), pages 5-26.
    20. Bottani, Eleonora & Rizzi, Antonio, 2008. "An adapted multi-criteria approach to suppliers and products selection--An application oriented to lead-time reduction," International Journal of Production Economics, Elsevier, vol. 111(2), pages 763-781, February.

    More about this item

    Keywords

    uncertainty; TOPSIS; IT2 FSs; MCGDM;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3512-:d:1217108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.