Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
- Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
- Mathijs Cosemans & Rik Frehen & Peter C. Schotman & Rob Bauer, 2016.
"Estimating Security Betas Using Prior Information Based on Firm Fundamentals,"
The Review of Financial Studies, Society for Financial Studies, vol. 29(4), pages 1072-1112.
- Cosemans, Mathijs & Frehen, Rik & Schotman, Peter & Bauer, Rob, 2016. "Estimating security betas using prior information based on firm fundamentals," Other publications TiSEM f0f91c05-b59e-454c-a102-a, Tilburg University, School of Economics and Management.
- Asness, Cliff & Frazzini, Andrea & Gormsen, Niels Joachim & Pedersen, Lasse Heje, 2020.
"Betting against correlation: Testing theories of the low-risk effect,"
Journal of Financial Economics, Elsevier, vol. 135(3), pages 629-652.
- Pedersen, Lasse Heje & Asness, Clifford S. & Frazzini, Andrea & Gormsen, Niels Joachim, 2018. "Betting Against Correlation: Testing Theories of the Low-Risk Effect," CEPR Discussion Papers 12686, C.E.P.R. Discussion Papers.
- Ang, Andrew & Chen, Joseph, 2007.
"CAPM over the long run: 1926-2001,"
Journal of Empirical Finance, Elsevier, vol. 14(1), pages 1-40, January.
- Andrew Ang & Joseph Chen, 2005. "CAPM Over the Long Run: 1926-2001," NBER Working Papers 11903, National Bureau of Economic Research, Inc.
- Ahsan Habib & Mostafa Monzur Hasan & Haiyan Jiang, 2018. "Stock price crash risk: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 211-251, November.
- Wayne E. Ferson & Andrew F. Siegel, 2009. "Testing Portfolio Efficiency with Conditioning Information," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2535-2558, July.
- Scott Cederburg & Michael S. O'Doherty, 2016. "Does It Pay to Bet Against Beta? On the Conditional Performance of the Beta Anomaly," Journal of Finance, American Finance Association, vol. 71(2), pages 737-774, April.
- Frazzini, Andrea & Pedersen, Lasse Heje, 2014.
"Betting against beta,"
Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
- Andrea Frazzini & Lasse H. Pedersen, 2010. "Betting Against Beta," NBER Working Papers 16601, National Bureau of Economic Research, Inc.
- Andrea Frazzini & Lasse Heje Pedersen, 2012. "Betting Against Beta," Swiss Finance Institute Research Paper Series 12-17, Swiss Finance Institute.
- Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
- Dong Lou, 2012. "A Flow-Based Explanation for Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3457-3489.
- Danilo Leal & Rodrigo Jiménez & Marco Riquelme & Víctor Leiva, 2023. "Elliptical Capital Asset Pricing Models: Formulation, Diagnostics, Case Study with Chilean Data, and Economic Rationale," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
- Zhe An & Zhian Chen & Donghui Li & Lu Xing, 2018. "Individualism and stock price crash risk," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 49(9), pages 1208-1236, December.
- Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
- Jia, Ning, 2018. "Corporate innovation strategy and stock price crash risk," Journal of Corporate Finance, Elsevier, vol. 53(C), pages 155-173.
- Oliver Boguth & Murray Carlson & Adlai Fisher & Mikhail Simutin, 2016. "Horizon Effects in Average Returns: The Role of Slow Information Diffusion," The Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 2241-2281.
- Pontiff, Jeffrey, 2006. "Costly arbitrage and the myth of idiosyncratic risk," Journal of Accounting and Economics, Elsevier, vol. 42(1-2), pages 35-52, October.
- Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
- He, Dongwei & Ho, Chun-Yu & Xu, Li, 2020. "Risk and return of online channel adoption in the banking industry," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Li, Yan & Li, Weiping, 2021. "Firm-specific investor sentiment for the Chinese stock market," Economic Modelling, Elsevier, vol. 97(C), pages 231-246.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cynthia M. Gong & Di Luo & Huainan Zhao, 2021. "Liquidity risk and the beta premium," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(4), pages 789-814, December.
- Vigo Pereira, Caio, 2021.
"Portfolio efficiency with high-dimensional data as conditioning information,"
International Review of Financial Analysis, Elsevier, vol. 77(C).
- Caio Vigo Pereira, 2020. "Portfolio Efficiency with High-Dimensional Data as Conditioning Information," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202015, University of Kansas, Department of Economics, revised Sep 2020.
- Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.
- Penman, Stephen & Zhu, Julie, 2022. "An accounting-based asset pricing model and a fundamental factor," Journal of Accounting and Economics, Elsevier, vol. 73(2).
- Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
- Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
- Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
- Bradrania, Reza & Veron, Jose Francisco, 2023. "The beta anomaly in the Australian stock market and the lottery demand," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Ali Habibnia & Esfandiar Maasoumi, 2021.
"Forecasting in Big Data Environments: An Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet),"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 363-381, December.
- Ali Habibnia & Esfandiar Maasoumi, 2019. "Forecasting in Big Data Environments: an Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)," Papers 1904.11145, arXiv.org.
- Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020.
"Shrinking the cross-section,"
Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
- Serhiy Kozak & Stefan Nagel & Shrihari Santosh, 2017. "Shrinking the Cross Section," NBER Working Papers 24070, National Bureau of Economic Research, Inc.
- Nagel, Stefan & Santosh, Shrihari & Kozak, Serhiy, 2017. "Shrinking the Cross Section," CEPR Discussion Papers 12463, C.E.P.R. Discussion Papers.
- Hu, Gang & Liu, Yiye & Wang, Jacqueline Wenjie & Zhou, Gaoguang & Zhu, Xindong, 2022. "Insider ownership and stock price crash risk around the globe," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
- Michail Filippidis & George Filis & Georgios Magkonis & Panagiotis Tzouvanas, 2023. "Evaluating robust determinants of the WTI/Brent oil price differential: A dynamic model averaging analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 807-825, June.
- Roussanov, Nikolai, 2014.
"Composition of wealth, conditioning information, and the cross-section of stock returns,"
Journal of Financial Economics, Elsevier, vol. 111(2), pages 352-380.
- Nikolai Roussanov, 2010. "Composition of Wealth, Conditioning Information, and the Cross-Section of Stock Returns," NBER Working Papers 16073, National Bureau of Economic Research, Inc.
- Insana, Alessandra, 2022. "Does systematic risk change when markets close? An analysis using stocks’ beta," Economic Modelling, Elsevier, vol. 109(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
More about this item
Keywords
asset pricing; beta estimation; machine learning; stock market;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3220-:d:1199869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.