IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2972-d1186079.html
   My bibliography  Save this article

A New Method for Commercial-Scale Water Purification Selection Using Linguistic Neural Networks

Author

Listed:
  • Saleem Abdullah

    (Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

  • Alaa O. Almagrabi

    (Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Nawab Ali

    (Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan)

Abstract

A neural network is a very useful tool in artificial intelligence (AI) that can also be referred to as an ANN. An artificial neural network (ANN) is a deep learning model that has a broad range of applications in real life. The combination and interrelationship of neurons and nodes with each other facilitate the transmission of information. An ANN has a feed-forward neural network. The neurons are arranged in layers, and each layer performs a particular calculation on the incoming data. Up until the output layer, which generates the network’s ultimate output, is reached, each layer’s output is transmitted as an input to the subsequent layer. A feed-forward neural network (FFNN) is a method for finding the output of expert information. In this research, we expand upon the concept of fuzzy neural network systems and introduce feed-forward double-hierarchy linguistic neural network systems (FFDHLNNS) using Yager–Dombi aggregation operators. We also discuss the desirable properties of Yager–Dombi aggregation operators. Moreover, we describe double-hierarchy linguistic term sets (DHLTSs) and discuss the score function of DHLTSs and the distance between any two double-hierarchy linguistic term elements (DHLTEs). Here, we discuss different approaches to choosing a novel water purification technique on a commercial scale, as well as some variables influencing these approaches. We apply a feed-forward double-hierarchy linguistic neural network (FFDHLNN) to select the best method for water purification. Moreover, we use the extended version of the Technique for Order Preference by Similarity to Ideal Solution (extended TOPSIS) method and the grey relational analysis (GRA) method for the verification of our suggested approach. Remarkably, both approaches yield almost the same results as those obtained using our proposed method. The proposed models were compared with other existing models of decision support systems, and the comparison demonstrated that the proposed models are feasible and valid decision support systems. The proposed technique is more reliable and accurate for the selection of large-scale water purification methods.

Suggested Citation

  • Saleem Abdullah & Alaa O. Almagrabi & Nawab Ali, 2023. "A New Method for Commercial-Scale Water Purification Selection Using Linguistic Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2972-:d:1186079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Shan Chen & Ke-Chiun Chang, 2009. "Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 637-655, September.
    2. Philip Swicegood & Jeffrey A. Clark, 2001. "Off‐site monitoring systems for predicting bank underperformance: a comparison of neural networks, discriminant analysis, and professional human judgment," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(3), pages 169-186, September.
    3. Kattan, MW & Cooper, RB, 1998. "The predictive accuracy of computer-based classification decision techniques.A review and research directions," Omega, Elsevier, vol. 26(4), pages 467-482, August.
    4. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    5. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
    6. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    7. Harlan L. Etheridge & Kathy H. Y. Hsu, 2015. "Minimizing the Costs of Using Models to Assess the Financial Health of Banks," International Journal of Business and Social Research, LAR Center Press, vol. 5(11), pages 9-18, November.
    8. Olson, Dennis & Zoubi, Taisier A., 2008. "Using accounting ratios to distinguish between Islamic and conventional banks in the GCC region," The International Journal of Accounting, Elsevier, vol. 43(1), pages 45-65, March.
    9. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    10. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    11. Hian Koh & Sen Tan, 1999. "A neural network approach to the prediction of going concern status," Accounting and Business Research, Taylor & Francis Journals, vol. 29(3), pages 211-216.
    12. Richard Oduro & Michael Amoh Aseidu, 2017. "A Model to Predict Corporate Failure in the Developing Economies: A Case of Listed Companies on the Ghana Stock Exchange," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(4), pages 1-5.
    13. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    14. Greta Falavigna, 2008. "Nouveaux instruments d’évaluation pour le risque financier d’entreprise," CERIS Working Paper 200801, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    15. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    16. Paul A. Copley & Edward B. Douthett, 2002. "The Association between Auditor Choice, Ownership Retained, and Earnings Disclosure by Firms Making Initial Public Offerings," Contemporary Accounting Research, John Wiley & Sons, vol. 19(1), pages 49-76, March.
    17. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
    18. Eleftherios Giovanis, 2012. "Study of Discrete Choice Models and Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA," Economic Analysis and Policy, Elsevier, vol. 42(1), pages 79-96, March.
    19. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    20. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2972-:d:1186079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.