IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2735-d1172910.html
   My bibliography  Save this article

Study on Dynamic Behavior of a Stochastic Predator–Prey System with Beddington–DeAngelis Functional Response and Regime Switching

Author

Listed:
  • Quan Wang

    (College of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China)

  • Li Zu

    (College of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
    Key Laboratory of Ministry of Education for Data Science and Intelligence Education, Hainan Normal University, Haikou 571158, China
    Ministry of Education and Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China)

  • Daqing Jiang

    (School of Science, China University of Petroleum (East China), Qingdao 266580, China
    Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group, King Abdulaziz University, Jeddah 121589, Saudi Arabia)

  • Donal O’Regan

    (School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland)

Abstract

In this paper, by introducing environmental white noise and telegraph noise, we proposed a stochastic predator–prey model with the Beddington–DeAngelis type functional response and investigated its dynamical behavior. Persistence and extinction are two core contents of population model research, so we analyzed these two properties. The sufficient conditions of the strong persistence in the mean and extinction were established and the threshold between them was obtained. Moreover, we took stability into account and, by means of structuring a suitable Lyapunov function with regime switching, we proved that the stochastic system has a unique stationary distribution. Finally, numerical simulations were used to illustrate our theoretical results.

Suggested Citation

  • Quan Wang & Li Zu & Daqing Jiang & Donal O’Regan, 2023. "Study on Dynamic Behavior of a Stochastic Predator–Prey System with Beddington–DeAngelis Functional Response and Regime Switching," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2735-:d:1172910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khasminskii, R.Z. & Zhu, C. & Yin, G., 2007. "Stability of regime-switching diffusions," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1037-1051, August.
    2. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    3. Zu, Li & Jiang, Daqing & O’Regan, Donal & Hayat, Tasawar & Ahmad, Bashir, 2018. "Ergodic property of a Lotka–Volterra predator–prey model with white noise higher order perturbation under regime switching," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 93-102.
    4. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    2. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    3. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    5. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    6. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    7. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    8. El Attouga, Sanae & Bouggar, Driss & El Fatini, Mohamed & Hilbert, Astrid & Pettersson, Roger, 2023. "Lévy noise with infinite activity and the impact on the dynamic of an SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    9. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    11. Zhang, Xiao-Bing & Chang, Suqin & Shi, Qihong & Huo, Hai-Feng, 2018. "Qualitative study of a stochastic SIS epidemic model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 805-817.
    12. Liu, Songnan & Xu, Xiaojie & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of the DS-I-A model disease with periodic parameter function and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 66-84.
    13. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Lu, Chun & Ding, Xiaohua, 2019. "Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 313-322.
    15. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    16. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    17. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    18. Wei, Fengying & Chen, Fangxiang, 2016. "Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 99-107.
    19. Chen, Zhewen & Tian, Zhuyan & Zhang, Shuwen & Wei, Chunjin, 2020. "The stationary distribution and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    20. Zhang, Xinhong & Shi, Zhenfeng & Wang, Yuanyuan, 2019. "Dynamics of a stochastic avian–human influenza epidemic model with mutation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2735-:d:1172910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.