IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v330y2018icp93-102.html
   My bibliography  Save this article

Ergodic property of a Lotka–Volterra predator–prey model with white noise higher order perturbation under regime switching

Author

Listed:
  • Zu, Li
  • Jiang, Daqing
  • O’Regan, Donal
  • Hayat, Tasawar
  • Ahmad, Bashir

Abstract

In this paper, we investigate a classical Lotka–Volterra predator–prey model with telephone noise and a higher order perturbation of white noise. The existence of a unique positive solution is discussed and sufficient conditions for the existence of an ergodic stationary distribution is established. Some simulation figures are presented to illustrate the analytical findings.

Suggested Citation

  • Zu, Li & Jiang, Daqing & O’Regan, Donal & Hayat, Tasawar & Ahmad, Bashir, 2018. "Ergodic property of a Lotka–Volterra predator–prey model with white noise higher order perturbation under regime switching," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 93-102.
  • Handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:93-102
    DOI: 10.1016/j.amc.2018.02.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318301371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Periodic solution and stationary distribution of stochastic SIR epidemic models with higher order perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 209-217.
    2. Khasminskii, R.Z. & Zhu, C. & Yin, G., 2007. "Stability of regime-switching diffusions," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1037-1051, August.
    3. Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 684-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    4. Han, Bingtao & Zhou, Baoquan & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    5. Han, Bingtao & Jiang, Daqing, 2022. "Stationary distribution, extinction and density function of a stochastic prey-predator system with general anti-predator behavior and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Lu, Chun & Ding, Xiaohua, 2019. "Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 313-322.
    7. Yassine Sabbar & Mehmet Yavuz & Fatma Özköse, 2022. "Infection Eradication Criterion in a General Epidemic Model with Logistic Growth, Quarantine Strategy, Media Intrusion, and Quadratic Perturbation," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    8. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    9. Quan Wang & Li Zu & Daqing Jiang & Donal O’Regan, 2023. "Study on Dynamic Behavior of a Stochastic Predator–Prey System with Beddington–DeAngelis Functional Response and Regime Switching," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    10. Chen, Zhewen & Tian, Zhuyan & Zhang, Shuwen & Wei, Chunjin, 2020. "The stationary distribution and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    2. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    3. Feifei Bian & Wencai Zhao & Yi Song & Rong Yue, 2017. "Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input," Complexity, Hindawi, vol. 2017, pages 1-18, December.
    4. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    5. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    6. Alessandro Ramponi, 2011. "Mixture Dynamics and Regime Switching Diffusions with Application to Option Pricing," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 349-368, June.
    7. Liu, Yuanyuan & Wen, Zhexin, 2024. "Two-time-scale stochastic functional differential equations with wideband noises and jumps," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Leonardo Videla & Rolando Rebolledo, 2022. "Evolving Systems of Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1662-1705, September.
    9. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Sabbar, Yassine & Kiouach, Driss & Rajasekar, S.P. & El-idrissi, Salim El Azami, 2022. "The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    12. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Wei, Wei & Xu, Wei & Song, Yi & Liu, Jiankang, 2021. "Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Caraballo, T. & Settati, A. & Lahrouz, A. & Boutouil, S. & Harchaoui, B., 2024. "On the stochastic threshold of the COVID-19 epidemic model incorporating jump perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    16. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    17. Liu, Liya & Jiang, Daqing & Hayat, Tasawar, 2021. "Dynamics of an SIR epidemic model with varying population sizes and regime switching in a two patch setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    18. Wang, Liang & Jiang, Daqing & Feng, Tao, 2022. "Threshold dynamics in a stochastic chemostat model under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    19. Sabbar, Yassine & Din, Anwarud & Kiouach, Driss, 2023. "Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    20. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:93-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.