IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v311y2017icp66-84.html
   My bibliography  Save this article

Stationary distribution and extinction of the DS-I-A model disease with periodic parameter function and Markovian switching

Author

Listed:
  • Liu, Songnan
  • Xu, Xiaojie
  • Jiang, Daqing
  • Hayat, Tasawar
  • Ahmad, Bashir

Abstract

This paper introduces the DS-I-A model with periodic parameter function and Markovian switching. First, we will prove that the solution of the system is positive and global. Furthermore, we draw a conclusion that there exists nontrivial positive periodic solution for the stochastic system and we establish sufficient conditions for extinction of system. Moreover, we construct stochastic Lyapunov functions with regime switching to obtain the existence of ergodic stationary distribution of the solution to DS-I-A model perturbed by white and telephone noises and we also establish sufficient conditions for extinction of system with regime switching. Finally, we test our theory conclusion by simulations.

Suggested Citation

  • Liu, Songnan & Xu, Xiaojie & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of the DS-I-A model disease with periodic parameter function and Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 66-84.
  • Handle: RePEc:eee:apmaco:v:311:y:2017:i:c:p:66-84
    DOI: 10.1016/j.amc.2017.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317302813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.
    2. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    3. De la Sen, M. & Alonso-Quesada, S. & Ibeas, A., 2015. "On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 953-976.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Attouga, Sanae & Bouggar, Driss & El Fatini, Mohamed & Hilbert, Astrid & Pettersson, Roger, 2023. "Lévy noise with infinite activity and the impact on the dynamic of an SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    2. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    3. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    4. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    5. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    6. Berrhazi, Badreddine & El Fatini, Mohamed & Lahrouz, Aadil & Settati, Adel & Taki, Regragui, 2018. "A stochastic SIRS epidemic model with a general awareness-induced incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 968-980.
    7. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    8. Quan Wang & Li Zu & Daqing Jiang & Donal O’Regan, 2023. "Study on Dynamic Behavior of a Stochastic Predator–Prey System with Beddington–DeAngelis Functional Response and Regime Switching," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    9. Wei, Fengying & Chen, Fangxiang, 2016. "Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 99-107.
    10. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    11. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    12. Zhang, Xiao-Bing & Chang, Suqin & Shi, Qihong & Huo, Hai-Feng, 2018. "Qualitative study of a stochastic SIS epidemic model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 805-817.
    13. Saha, Sangeeta & Dutta, Protyusha & Samanta, Guruprasad, 2022. "Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Zhang, Xinhong & Shi, Zhenfeng & Wang, Yuanyuan, 2019. "Dynamics of a stochastic avian–human influenza epidemic model with mutation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    16. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    17. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    18. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    19. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.
    20. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:311:y:2017:i:c:p:66-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.