IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p66-d1014143.html
   My bibliography  Save this article

Guidance Law for Autonomous Takeoff and Landing of Unmanned Helicopter on Mobile Platform Based on Asymmetric Tracking Differentiator

Author

Listed:
  • Zian Wang

    (China Academy of Launch Vehicle Technology, Beijing 100076, China)

  • Zheng Gong

    (Department of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yang Yang

    (China Academy of Launch Vehicle Technology, Beijing 100076, China)

  • Yongzhen Liu

    (AVIC Shenyang Aircraft Design And Research Institute, Shenyang 116024, China)

  • Pengcheng Cai

    (Department of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Chengxi Zhang

    (Key Laboratory of Advanced Control for Light Industry Processes, Ministry of Education, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)

Abstract

For some flight missions, such as autonomous landing on mobile platforms, the demands on indicators such as target-tracking accuracy and so on are relatively high. To achieve this, a guidance system with excellent precision is necessary. An asymmetric tracking differentiator based on a tracking differentiator is proposed to establish the guidance system. On the basis of the proposed asymmetric tracking differentiator, an altitudinal and horizontal helicopter guidance system structure is designed. In this paper, a guidance law is designed in order to meet the accuracy and precision requirements in the autonomous landing and transition process. Apart from that, a plane-motion-guidance law is also designed to realize static and dynamic point tracking, linear route tracking and circular route tracking to improve the trajectory smoothness and accuracy. Finally, simulations of the autonomous landing process on moving platforms, including three stages, namely approaching, tracking and landing, are completed. The application effects and precision of the autonomous landing guidance algorithm under different wave heights and period conditions are analyzed through the obtained simulation curves.

Suggested Citation

  • Zian Wang & Zheng Gong & Yang Yang & Yongzhen Liu & Pengcheng Cai & Chengxi Zhang, 2022. "Guidance Law for Autonomous Takeoff and Landing of Unmanned Helicopter on Mobile Platform Based on Asymmetric Tracking Differentiator," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:66-:d:1014143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Cheng & Zian Wang & Zheng Gong & Pengcheng Cai & Chengxi Zhang, 2022. "Prediction and Compensation Model of Longitudinal and Lateral Deck Motion for Automatic Landing Guidance System," Mathematics, MDPI, vol. 10(19), pages 1-43, September.
    2. Chen Cheng & Zian Wang & Chengxi Zhang & Yang Yang, 2022. "Attitude Control Method of Unmanned Helicopter Based on Asymmetric Tracking Differentiator and Fal-Extended State Observer," Mathematics, MDPI, vol. 10(19), pages 1-30, September.
    3. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.
    4. Carlos Aguilar-Ibanez & Miguel S. Suarez-Castanon & Octavio Gutierrez-Frias & Jose de Jesus Rubio & Jesus A. Meda-Campana, 2020. "A Robust Control Strategy for Landing an Unmanned Aerial Vehicle on a Vertically Moving Platform," Complexity, Hindawi, vol. 2020, pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    2. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    3. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    4. Hemer, Mark A. & Zieger, Stefan & Durrant, Tom & O'Grady, Julian & Hoeke, Ron K. & McInnes, Kathleen L. & Rosebrock, Uwe, 2017. "A revised assessment of Australia's national wave energy resource," Renewable Energy, Elsevier, vol. 114(PA), pages 85-107.
    5. Canals Silander, Miguel F. & García Moreno, Carlos G., 2019. "On the spatial distribution of the wave energy resource in Puerto Rico and the United States Virgin Islands," Renewable Energy, Elsevier, vol. 136(C), pages 442-451.
    6. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    7. Sánchez, Antonio Santos & Rodrigues, Diego Arruda & Fontes, Raony Maia & Martins, Márcio Fernandes & Kalid, Ricardo de Araújo & Torres, Ednildo Andrade, 2018. "Wave resource characterization through in-situ measurement followed by artificial neural networks' modeling," Renewable Energy, Elsevier, vol. 115(C), pages 1055-1066.
    8. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
    9. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    10. Gao, Hong & Yu, Yang, 2018. "The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves," Energy, Elsevier, vol. 143(C), pages 833-845.
    11. Hugo Mendonça & Rosa M. De Castro & Sergio Martínez & David Montalbán, 2017. "Voltage Impact of a Wave Energy Converter on an Unbalanced Distribution Grid and Corrective Actions," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    12. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    13. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    14. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. de Oliveira, Lucas & Santos, Ivan Felipe Silva dos & Schmidt, Nágila Lucietti & Tiago Filho, Geraldo Lúcio & Camacho, Ramiro Gustavo Ramirez & Barros, Regina Mambeli, 2021. "Economic feasibility study of ocean wave electricity generation in Brazil," Renewable Energy, Elsevier, vol. 178(C), pages 1279-1290.
    16. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    17. Yue, Xuhui & Geng, Dazhou & Chen, Qijuan & Zheng, Yang & Gao, Gongzheng & Xu, Lei, 2021. "2-D lookup table based MPPT: Another choice of improving the generating capacity of a wave power system," Renewable Energy, Elsevier, vol. 179(C), pages 625-640.
    18. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
    19. Humberto Verdejo & Almendra Awerkin & Wolfgang Kliemann & Cristhian Becker & Héctor Chávez & Karina A. Barbosa & José Delpiano, 2019. "A Dynamic Stochastic Hybrid Model to Represent Significant Wave Height and Wave Period for Marine Energy Representation," Energies, MDPI, vol. 12(5), pages 1-15, March.
    20. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:66-:d:1014143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.