IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7501-d1276833.html
   My bibliography  Save this article

Implementation Process Simulation and Performance Analysis for the Multi-Timescale Lookup-Table-Based Maximum Power Point Tracking under Variable Irregular Waves

Author

Listed:
  • Xuhui Yue

    (PowerChina HuaDong Engineering Corporation Limited, Hangzhou 311122, China
    Hangzhou Huachen Electric Power Control Corporation Limited, Hangzhou 311122, China)

  • Feifeng Meng

    (PowerChina HuaDong Engineering Corporation Limited, Hangzhou 311122, China
    Hangzhou Huachen Electric Power Control Corporation Limited, Hangzhou 311122, China)

  • Zhoubo Tong

    (PowerChina HuaDong Engineering Corporation Limited, Hangzhou 311122, China
    Hangzhou Huachen Electric Power Control Corporation Limited, Hangzhou 311122, China)

  • Qijuan Chen

    (Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China)

  • Dazhou Geng

    (China Renewable Energy Engineering Institute, Beijing 100120, China)

  • Jiaying Liu

    (PowerChina HuaDong Engineering Corporation Limited, Hangzhou 311122, China
    Hangzhou Huachen Electric Power Control Corporation Limited, Hangzhou 311122, China)

Abstract

The efficacy of the multi-timescale lookup-table-based maximum power point tracking (MLTB MPPT) in capturing energy at various fixed sea states has already been demonstrated. However, it remains imperative to conduct a more comprehensive evaluation of the MPPT tracking performance under varying sea states in practical scenarios. Additionally, it is crucial to engage in an in-depth analysis of the dynamic process and energy loss/consumption associated with MLTB MPPT implementations. This paper focuses on the implementation process simulation and performance analysis for the MLTB MPPT under variable irregular waves. Firstly, the structure of the wave power controller based on a MLTB MPPT algorithm is described in detail, as well as that of a controlled plant, known as a novel inverse-pendulum wave energy converter (NIPWEC). Secondly, mathematical models for the MLTB MPPT are developed, taking into account the efficiency of each link. In this paper, we present simplified modelling methods for both permanent magnet synchronous generator (PMSG) vector control and permanent magnet synchronous motor (PMSM) servo control. Finally, the tracking performance of the MLTB MPPT in the presence of variable irregular waves is comprehensively analyzed by simulating the implementation process and comparing it with two other MPPT algorithms, i.e., the frequency- and amplitude-control-based MPPT and the lookup-table-based internal mass position adjustment combined with the optimal fixed damping search. Results show that the MLTB MPPT (Method 2) is a competitive algorithm. Besides, a significant portion (>12%) of the time-averaged absorbed power is actually lost during the power generation process. On the other hand, the power required for a mass-position-adjusting mechanism is relatively small (approximately 0.2 kW, <1.5%). The research findings can offer theoretical guidance for optimizing the operation of NIPWEC engineering prototypes under actual sea conditions.

Suggested Citation

  • Xuhui Yue & Feifeng Meng & Zhoubo Tong & Qijuan Chen & Dazhou Geng & Jiaying Liu, 2023. "Implementation Process Simulation and Performance Analysis for the Multi-Timescale Lookup-Table-Based Maximum Power Point Tracking under Variable Irregular Waves," Energies, MDPI, vol. 16(22), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7501-:d:1276833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aqiang Zhao & Weimin Wu & Zuoyao Sun & Lixun Zhu & Kaiyuan Lu & Henry Chung & Frede Blaabjerg, 2019. "A Flower Pollination Method Based Global Maximum Power Point Tracking Strategy for Point-Absorbing Type Wave Energy Converters," Energies, MDPI, vol. 12(7), pages 1-19, April.
    2. Temiz, Irina & Leijon, Jennifer & Ekergård, Boel & Boström, Cecilia, 2018. "Economic aspects of latching control for a wave energy converter with a direct drive linear generator power take-off," Renewable Energy, Elsevier, vol. 128(PA), pages 57-67.
    3. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.
    4. Dong, Feng & Pan, Shangzhi & Gong, Jinwu & Cai, Yuanqi, 2023. "Maximum power point tracking control strategy based on frequency and amplitude control for the wave energy conversion system," Renewable Energy, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Xuhui & Geng, Dazhou & Chen, Qijuan & Zheng, Yang & Gao, Gongzheng & Xu, Lei, 2021. "2-D lookup table based MPPT: Another choice of improving the generating capacity of a wave power system," Renewable Energy, Elsevier, vol. 179(C), pages 625-640.
    2. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Xuhui Yue & Jintao Zhang & Feifeng Meng & Jiaying Liu & Qijuan Chen & Dazhou Geng, 2023. "Multi-Timescale Lookup Table Based Maximum Power Point Tracking of an Inverse-Pendulum Wave Energy Converter: Power Assessments and Sensitivity Study," Energies, MDPI, vol. 16(17), pages 1-25, August.
    6. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    7. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    8. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    9. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    10. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    11. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    12. Hemer, Mark A. & Zieger, Stefan & Durrant, Tom & O'Grady, Julian & Hoeke, Ron K. & McInnes, Kathleen L. & Rosebrock, Uwe, 2017. "A revised assessment of Australia's national wave energy resource," Renewable Energy, Elsevier, vol. 114(PA), pages 85-107.
    13. Zian Wang & Zheng Gong & Yang Yang & Yongzhen Liu & Pengcheng Cai & Chengxi Zhang, 2022. "Guidance Law for Autonomous Takeoff and Landing of Unmanned Helicopter on Mobile Platform Based on Asymmetric Tracking Differentiator," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    14. Canals Silander, Miguel F. & García Moreno, Carlos G., 2019. "On the spatial distribution of the wave energy resource in Puerto Rico and the United States Virgin Islands," Renewable Energy, Elsevier, vol. 136(C), pages 442-451.
    15. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    16. Sánchez, Antonio Santos & Rodrigues, Diego Arruda & Fontes, Raony Maia & Martins, Márcio Fernandes & Kalid, Ricardo de Araújo & Torres, Ednildo Andrade, 2018. "Wave resource characterization through in-situ measurement followed by artificial neural networks' modeling," Renewable Energy, Elsevier, vol. 115(C), pages 1055-1066.
    17. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    18. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    19. Aqiang Zhao & Weimin Wu & Zuoyao Sun & Lixun Zhu & Kaiyuan Lu & Henry Chung & Frede Blaabjerg, 2019. "A Flower Pollination Method Based Global Maximum Power Point Tracking Strategy for Point-Absorbing Type Wave Energy Converters," Energies, MDPI, vol. 12(7), pages 1-19, April.
    20. Haraguchi, Ruriko & Asai, Takehiko, 2020. "Enhanced power absorption of a point absorber wave energy converter using a tuned inertial mass," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7501-:d:1276833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.