IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p42-d1011795.html
   My bibliography  Save this article

Using Four Metaheuristic Algorithms to Reduce Supplier Disruption Risk in a Mathematical Inventory Model for Supplying Spare Parts

Author

Listed:
  • Komeyl Baghizadeh

    (Innovation and Technology Institute, University of Southern Denmark, 5230 Odense, Denmark)

  • Nafiseh Ebadi

    (Department of Industrial Engineering, Iran University of Science and Technology, Tehran 46899, Iran)

  • Dominik Zimon

    (Department of Management Systems and Logistics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Luay Jum’a

    (Department of Logistic Sciences, School of Management and Logistic Sciences, German Jordanian University, Amman 11180, Jordan)

Abstract

Due to the unexpected breakdowns that can happen in various components of a production system, failure to reach production targets and interruptions in the process of production are not surprising. Since this issue remains for manufactured products, this halting results in the loss of profitability or demand. In this study, to address a number of challenges associated with the management of crucial spare parts inventory, a mathematical model is suggested for the determination of the optimal quantity of orders, in the case of an unpredicted supplier failure. Hence, a production system that has various types of equipment with crucial components is assumed, in which the crucial components are substituted with spare parts in the event of a breakdown. This study’s inventory model was developed for crucial spare parts based on the Markov chain process model for the case of supplier disruption. Moreover, for optimum ordering policies, re-ordering points, and cost values of the system, four metaheuristic algorithms were utilized that include Grey Wolf Optimizer (GWO), Genetic Algorithm (GA), Moth–Flame Optimization (MFO) Algorithm, and Differential Evolution (DE) Algorithm. Based on the results, reliable suppliers cannot meet all of the demands; therefore, we should sometimes count on unreliable suppliers to reduce unmet demand.

Suggested Citation

  • Komeyl Baghizadeh & Nafiseh Ebadi & Dominik Zimon & Luay Jum’a, 2022. "Using Four Metaheuristic Algorithms to Reduce Supplier Disruption Risk in a Mathematical Inventory Model for Supplying Spare Parts," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:42-:d:1011795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Chen & Zhixiang Chen, 2019. "A new optimal multi-product ( Q , R , SS ) policy with multivariate Markov stochastic demand forecasting model," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 14(1), pages 82-105.
    2. Ghadimi, Pezhman & Ghassemi Toosi, Farshad & Heavey, Cathal, 2018. "A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain," European Journal of Operational Research, Elsevier, vol. 269(1), pages 286-301.
    3. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    4. Murray, Chase C. & Gosavi, Abhijit & Talukdar, Debabrata, 2012. "The multi-product price-setting newsvendor with resource capacity constraints," International Journal of Production Economics, Elsevier, vol. 138(1), pages 148-158.
    5. Xiaomin Xu & Dongxiao Niu & Jinpeng Qiu & Peng Wang & Yanchao Chen, 2016. "Analysis and Optimization of Power Supply Structure Based on Markov Chain and Error Optimization for Renewable Energy from the Perspective of Sustainability," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    6. Suresh P. Sethi & Feng Cheng, 1997. "Optimality of ( s , S ) Policies in Inventory Models with Markovian Demand," Operations Research, INFORMS, vol. 45(6), pages 931-939, December.
    7. Komeyl Baghizadeh & Julia Pahl & Guiping Hu, 2021. "Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, September.
    8. Riccardo Patriarca & Tianya Hu & Francesco Costantino & Giulio Di Gravio & Massimo Tronci, 2019. "A System-Approach for Recoverable Spare Parts Management Using the Discrete Weibull Distribution," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    9. Tava Lennon Olsen & Rodney P. Parker, 2014. "On Markov Equilibria in Dynamic Inventory Competition," Operations Research, INFORMS, vol. 62(2), pages 332-344, April.
    10. Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
    11. Moin, N.H. & Salhi, S. & Aziz, N.A.B., 2011. "An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem," International Journal of Production Economics, Elsevier, vol. 133(1), pages 334-343, September.
    12. Arifoglu, Kenan & Özekici, Süleyman, 2010. "Optimal policies for inventory systems with finite capacity and partially observed Markov-modulated demand and supply processes," European Journal of Operational Research, Elsevier, vol. 204(3), pages 421-438, August.
    13. D. Beyer & S. P. Sethi, 1997. "Average Cost Optimality in Inventory Models with Markovian Demands," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 497-526, March.
    14. Choi, Sungyong & Ruszczynski, Andrzej, 2011. "A multi-product risk-averse newsvendor with exponential utility function," European Journal of Operational Research, Elsevier, vol. 214(1), pages 78-84, October.
    15. Dariusz Milewski, 2020. "Total Costs of Centralized and Decentralized Inventory Strategies—Including External Costs," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    16. Ahiska, S. Sebnem & Appaji, Samyuktha R. & King, Russell E. & Warsing, Donald P., 2013. "A Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing," International Journal of Production Economics, Elsevier, vol. 144(2), pages 485-496.
    17. Luo, Sha & Ahiska, S. Sebnem & Fang, Shu-Cherng & King, Russell E. & Warsing, Donald P. & Wu, Shuohao, 2021. "An analysis of optimal ordering policies for a two-supplier system with disruption risk," Omega, Elsevier, vol. 105(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fathi Alarabi Yosef & Luay Jum’a & Muntasir Alatoom, 2023. "Identifying and Categorizing Sustainable Supply Chain Practices Based on Triple Bottom Line Dimensions: Evaluation of Practice Implementation in the Cement Industry," Sustainability, MDPI, vol. 15(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
    2. Harun Avci & Kagan Gokbayrak & Emre Nadar, 2020. "Structural Results for Average‐Cost Inventory Models with Markov‐Modulated Demand and Partial Information," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 156-173, January.
    3. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    4. Hekimoğlu, Mustafa & van der Laan, Ervin & Dekker, Rommert, 2018. "Markov-modulated analysis of a spare parts system with random lead times and disruption risks," European Journal of Operational Research, Elsevier, vol. 269(3), pages 909-922.
    5. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    6. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.
    7. Jean-Philippe Gayon & Isilay Talay-Degirmenci & F. Karaesmen & L. Örmeci, 2009. "Optimal Pricing and Production Policies of a Make-to-Stock System with Fluctuating Demand," Post-Print hal-00363686, HAL.
    8. D. Beyer & S. P. Sethi & M. Taksar, 1998. "Inventory Models with Markovian Demands and Cost Functions of Polynomial Growth," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 281-323, August.
    9. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    10. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    11. Cassidey, Thomas B. & Freeman, Nickolas & Melouk, Sharif, 2022. "Leveraging concurrent sourcing for risk mitigation and pricing," Omega, Elsevier, vol. 113(C).
    12. Xiaoming Li, 2013. "Managing Dynamic Inventory Systems with Product Returns: A Markov Decision Process," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 577-592, May.
    13. Erhan Bayraktar & Michael Ludkovski, 2010. "Inventory management with partially observed nonstationary demand," Annals of Operations Research, Springer, vol. 176(1), pages 7-39, April.
    14. Arifoglu, Kenan & Özekici, Süleyman, 2011. "Inventory management with random supply and imperfect information: A hidden Markov model," International Journal of Production Economics, Elsevier, vol. 134(1), pages 123-137, November.
    15. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2011. "Average Cost Single-Stage Inventory Models: An Analysis Using a Vanishing Discount Approach," Operations Research, INFORMS, vol. 59(1), pages 143-155, February.
    16. Luo, Sha & Ahiska, S. Sebnem & Fang, Shu-Cherng & King, Russell E. & Warsing, Donald P. & Wu, Shuohao, 2021. "An analysis of optimal ordering policies for a two-supplier system with disruption risk," Omega, Elsevier, vol. 105(C).
    17. Manafzadeh Dizbin, Nima & Tan, Barış, 2020. "Optimal control of production-inventory systems with correlated demand inter-arrival and processing times," International Journal of Production Economics, Elsevier, vol. 228(C).
    18. D. Beyer & S. P. Sethi, 1999. "The Classical Average-Cost Inventory Models of Iglehart and Veinott–Wagner Revisited," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 523-555, June.
    19. Feng Cheng & Suresh P. Sethi, 1999. "A Periodic Review Inventory Model with Demand Influenced by Promotion Decisions," Management Science, INFORMS, vol. 45(11), pages 1510-1523, November.
    20. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:42-:d:1011795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.