IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p732-d758670.html
   My bibliography  Save this article

New Type Modelling of the Circumscribed Self-Excited Spherical Attractor

Author

Listed:
  • Mohammad Partohaghighi

    (Department of Mathematics, Clarkson University, Potsdam, NY 13699, USA)

  • Ali Akgül

    (Department of Mathematics, Art and Science Faculty, Siirt University, Siirt 56100, Turkey)

  • Rubayyi T. Alqahtani

    (Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia)

Abstract

The fractal–fractional derivative with the Mittag–Leffler kernel is employed to design the fractional-order model of the new circumscribed self-excited spherical attractor, which is not investigated yet by fractional operators. Moreover, the theorems of Schauder’s fixed point and Banach fixed existence theory are used to guarantee that there are solutions to the model. Approximate solutions to the problem are presented by an effective method. To prove the efficiency of the given technique, different values of fractal and fractional orders as well as initial conditions are selected. Figures of the approximate solutions are provided for each case in different dimensions.

Suggested Citation

  • Mohammad Partohaghighi & Ali Akgül & Rubayyi T. Alqahtani, 2022. "New Type Modelling of the Circumscribed Self-Excited Spherical Attractor," Mathematics, MDPI, vol. 10(5), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:732-:d:758670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    2. Partohaghighi, Mohammad & Akgül, Ali, 2021. "Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Leutcho, Gervais Dolvis & Jafari, Sajad & Hamarash, Ibrahim Ismael & Kengne, Jacques & Tabekoueng Njitacke, Zeric & Hussain, Iqtadar, 2020. "A new megastable nonlinear oscillator with infinite attractors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    4. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    5. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    6. Shahram Rezapour & Chernet Tuge Deressa & Azhar Hussain & Sina Etemad & Reny George & Bashir Ahmad, 2022. "A Theoretical Analysis of a Fractional Multi-Dimensional System of Boundary Value Problems on the Methylpropane Graph via Fixed Point Technique," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    7. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    9. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Shahram Rezapour & Sina Etemad & Ravi P. Agarwal & Kamsing Nonlaopon, 2022. "On a Lyapunov-Type Inequality for Control of a ψ -Model Thermostat and the Existence of Its Solutions," Mathematics, MDPI, vol. 10(21), pages 1-11, October.
    11. Nasibeh Mollahasani, 2024. "A Hybrid Spectral-Finite Difference Method for Numerical Pricing of Time-Fractional Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 841-869, August.
    12. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    13. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    15. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    16. Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    18. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    19. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    20. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:732-:d:758670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.