IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p506-d742528.html
   My bibliography  Save this article

On Estimating the Parameters of the Beta Inverted Exponential Distribution under Type-II Censored Samples

Author

Listed:
  • Maha A. Aldahlan

    (Department of Statistics, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia)

  • Rana A. Bakoban

    (Department of Statistics, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia)

  • Leena S. Alzahrani

    (Department of Statistics, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia)

Abstract

This article aims to consider estimating the unknown parameters, survival, and hazard functions of the beta inverted exponential distribution. Two methods of estimation were used based on type-II censored samples: maximum likelihood and Bayes estimators. The Bayes estimators were derived using an informative gamma prior distribution under three loss functions: squared error, linear exponential, and general entropy. Furthermore, a Monte Carlo simulation study was carried out to compare the performance of different methods. The potentiality of this distribution is illustrated using two real-life datasets from difference fields. Further, a comparison between this model and some other models was conducted via information criteria. Our model performs the best fit for the real data.

Suggested Citation

  • Maha A. Aldahlan & Rana A. Bakoban & Leena S. Alzahrani, 2022. "On Estimating the Parameters of the Beta Inverted Exponential Distribution under Type-II Censored Samples," Mathematics, MDPI, vol. 10(3), pages 1-37, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:506-:d:742528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Umesh & Gupta, Pramod K. & Upadhyay, S. K., 2005. "Estimation of parameters for exponentiated-Weibull family under type-II censoring scheme," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 509-523, March.
    2. Sanku Dey & Tanujit Dey, 2014. "On progressively censored generalized inverted exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2557-2576, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud R. Mahmoud & Hiba Z. Muhammed & Ahmed R. El-Saeed, 2023. "Inference for Generalized Inverted Exponential Distribution Under Progressive Type-I Censoring Scheme in Presence of Competing Risks Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 43-76, February.
    2. Wang, Liang & Wu, Shuo-Jye & Zhang, Chunfang & Dey, Sanku & Tripathi, Yogesh Mani, 2022. "Analysis for constant-stress model on multicomponent system from generalized inverted exponential distribution with stress dependent parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 301-316.
    3. Steve Su, 2016. "Flexible modelling of survival curves for censored data," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-20, December.
    4. Kundu, Debasis & Gupta, Rameshwar D., 2008. "Generalized exponential distribution: Bayesian estimations," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1873-1883, January.
    5. Volterman, William & Balakrishnan, N. & Cramer, Erhard, 2012. "Exact nonparametric meta-analysis for multiple independent doubly Type-II censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1243-1255.
    6. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    7. Dey, Sanku & Dey, Tanujit & Luckett, Daniel J., 2016. "Statistical inference for the generalized inverted exponential distribution based on upper record values," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 64-78.
    8. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    9. Aisha Fayomi & Ehab M. Almetwally & Maha E. Qura, 2023. "Exploring New Horizons: Advancing Data Analysis in Kidney Patient Infection Rates and UEFA Champions League Scores Using Bivariate Kavya–Manoharan Transformation Family of Distributions," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    10. Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
    11. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    12. Liang Wang & Huizhong Lin & Yuhlong Lio & Yogesh Mani Tripathi, 2022. "Interval Estimation of Generalized Inverted Exponential Distribution under Records Data: A Comparison Perspective," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
    13. Mohamed A. W. Mahmoud & Mohamed G. M. Ghazal & Hossam M. M. Radwan, 2023. "Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring," Annals of Data Science, Springer, vol. 10(2), pages 527-554, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:506-:d:742528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.