IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1047-d778764.html
   My bibliography  Save this article

Interval Estimation of Generalized Inverted Exponential Distribution under Records Data: A Comparison Perspective

Author

Listed:
  • Liang Wang

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Huizhong Lin

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA)

  • Yogesh Mani Tripathi

    (Department of Mathematics, Indian Institute of Technology Patna, Bihta 801106, India)

Abstract

In this paper, the problem of interval estimation is considered for the parameters of the generalized inverted exponential distribution. Based on upper record values, different pivotal quantities are proposed and the associated exact and generalized confidence intervals are constructed for the unknown model parameters and reliability indices, respectively. For comparison purposes, conventional likelihood based approximate confidence intervals are also provided by using observed Fisher information matrix. Moreover, prediction intervals are also constructed for future records based on proposed pivotal quantities and likelihood procedures as well. Finally, numerical studies are carried out to investigate and compare the performances of the proposed methods and a real data analysis is presented for illustrative purposes.

Suggested Citation

  • Liang Wang & Huizhong Lin & Yuhlong Lio & Yogesh Mani Tripathi, 2022. "Interval Estimation of Generalized Inverted Exponential Distribution under Records Data: A Comparison Perspective," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1047-:d:778764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
    2. Sanku Dey & Tanujit Dey, 2014. "On progressively censored generalized inverted exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2557-2576, December.
    3. Jin Zhang, 2018. "Minimum Volume Confidence Sets for Two-Parameter Exponential Distributions," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 213-218, July.
    4. Wu, Shu-Fei, 2008. "Interval estimation for a Pareto distribution based on a doubly type II censored sample," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3779-3788, March.
    5. Sukhdev Singh & Yogesh Mani Tripathi & Shuo-Jye Wu, 2017. "Bayesian estimation and prediction based on lognormal record values," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 916-940, April.
    6. Fernández, Arturo J., 2013. "Smallest Pareto confidence regions and applications," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 11-25.
    7. Dey, Sanku & Dey, Tanujit & Luckett, Daniel J., 2016. "Statistical inference for the generalized inverted exponential distribution based on upper record values," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 64-78.
    8. Soliman, Ahmed A. & Al-Aboud, Fahad M., 2008. "Bayesian inference using record values from Rayleigh model with application," European Journal of Operational Research, Elsevier, vol. 185(2), pages 659-672, March.
    9. Fernández, Arturo J., 2012. "Minimizing the area of a Pareto confidence region," European Journal of Operational Research, Elsevier, vol. 221(1), pages 205-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud R. Mahmoud & Hiba Z. Muhammed & Ahmed R. El-Saeed, 2023. "Inference for Generalized Inverted Exponential Distribution Under Progressive Type-I Censoring Scheme in Presence of Competing Risks Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 43-76, February.
    2. Wang, Liang & Wu, Shuo-Jye & Zhang, Chunfang & Dey, Sanku & Tripathi, Yogesh Mani, 2022. "Analysis for constant-stress model on multicomponent system from generalized inverted exponential distribution with stress dependent parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 301-316.
    3. Ayush Tripathi & Umesh Singh & Sanjay Kumar Singh, 2021. "Inferences for the DUS-Exponential Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 8(2), pages 387-403, June.
    4. A. Asgharzadeh & S. F. Bagheri & N. A. Ibrahim & M. R. Abubakar, 2020. "Optimal confidence regions for the two-parameter exponential distribution based on records," Computational Statistics, Springer, vol. 35(1), pages 309-326, March.
    5. Wang, Bing Xing & Yu, Keming & Coolen, Frank P.A., 2015. "Interval estimation for proportional reversed hazard family based on lower record values," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 115-122.
    6. Jana, Nabakumar & Bera, Samadrita, 2022. "Interval estimation of multicomponent stress–strength reliability based on inverse Weibull distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 95-119.
    7. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    8. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    9. Volterman, William & Balakrishnan, N. & Cramer, Erhard, 2012. "Exact nonparametric meta-analysis for multiple independent doubly Type-II censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1243-1255.
    10. Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
    11. Fen Jiang & Junmei Zhou & Jin Zhang, 2020. "Restricted minimum volume confidence region for Pareto distribution," Statistical Papers, Springer, vol. 61(5), pages 2015-2029, October.
    12. Dey, Sanku & Dey, Tanujit & Luckett, Daniel J., 2016. "Statistical inference for the generalized inverted exponential distribution based on upper record values," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 64-78.
    13. Jin Zhang, 2013. "Simplification of joint confidence regions for the parameters of the Pareto distribution," Computational Statistics, Springer, vol. 28(4), pages 1453-1462, August.
    14. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    15. Hanieh Panahi, 2019. "Estimation for the parameters of the Burr Type XII distribution under doubly censored sample with application to microfluidics data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 510-518, August.
    16. Aboeleneen, Z.A., 2010. "Inference for Weibull distribution under generalized order statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 26-36.
    17. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    18. Aisha Fayomi & Ehab M. Almetwally & Maha E. Qura, 2023. "Exploring New Horizons: Advancing Data Analysis in Kidney Patient Infection Rates and UEFA Champions League Scores Using Bivariate Kavya–Manoharan Transformation Family of Distributions," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    19. Fernández, Arturo J., 2012. "Minimizing the area of a Pareto confidence region," European Journal of Operational Research, Elsevier, vol. 221(1), pages 205-212.
    20. Raed R. Abu Awwad & Omar M. Bdair & Ghassan K. Abufoudeh, 2021. "Bayesian estimation and prediction based on Rayleigh record data with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 59-79, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1047-:d:778764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.