IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4738-d1002416.html
   My bibliography  Save this article

Dynamic Community Detection Method of a Social Network Based on Node Embedding Representation

Author

Listed:
  • Bo Zhang

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
    Institute of Artificial Intelligence on Education, Shanghai Normal University, Shanghai 200234, China
    Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai 200234, China)

  • Yifei Mi

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)

  • Lele Zhang

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)

  • Yuping Zhang

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)

  • Maozhen Li

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
    Institute of Artificial Intelligence on Education, Shanghai Normal University, Shanghai 200234, China
    Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge UB8 3PH, UK)

  • Qianqian Zhai

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)

  • Meizi Li

    (College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)

Abstract

The node embedding method enables network structure feature learning and representation for social network community detection. However, the traditional node embedding method only focuses on a node’s individual feature representation and ignores the global topological feature representation of the network. Traditional community detection methods cannot use the static node vector from the traditional node embedding method to calculate the dynamic features of the topological structure. In this study, an incremental dynamic community detection model based on a graph neural network node embedding representation is proposed, comprising the following aspects. A node embedding model based on influence random walk improves the information enrichment of the node feature vector representation, which improves the performance of the initial static community detection, whose results are used as the original structure of dynamic community detection. By combining a cohesion coefficient and ordinary modularity, a new modularity calculation method is proposed that uses an incremental training method to obtain node vector representation to detect a dynamic community from the perspectives of coarse- and fine-grained adjustments. A performance analysis based on two dynamic network datasets shows that the proposed method performs better than benchmark algorithms based on time complexity, community detection accuracy, and other indicators.

Suggested Citation

  • Bo Zhang & Yifei Mi & Lele Zhang & Yuping Zhang & Maozhen Li & Qianqian Zhai & Meizi Li, 2022. "Dynamic Community Detection Method of a Social Network Based on Node Embedding Representation," Mathematics, MDPI, vol. 10(24), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4738-:d:1002416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Zhong & Huang, Jincai & Cheng, Guangquan, 2016. "Community detection in hypernetwork via Density-Ordered Tree partitionAuthor-Name: Cheng, Qing," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 384-393.
    2. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    3. Manuel Guerrero & Consolación Gil & Francisco G. Montoya & Alfredo Alcayde & Raúl Baños, 2020. "Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Wei & Sun Ning, 2018. "Establishment and Analysis of the Supernetwork Model for Nanjing Metro Transportation System," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    2. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    3. Yu, Wei & Jiao, Pengfei & Wang, Wenjun & Yu, Yang & Chen, Xue & Pan, Lin, 2019. "A novel evolutionary clustering via the first-order varying information for dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 507-520.
    4. Weihua Qian & Hang Xu & Houjin Chen & Lvqing Yang & Yuanguo Lin & Rui Xu & Mulan Yang & Minghong Liao, 2024. "A Synergistic MOEA Algorithm with GANs for Complex Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-30, January.
    5. Hanlin You & Mengjun Li & Jiang Jiang & Bingfeng Ge & Xueting Zhang, 2017. "Evolution monitoring for innovation sources using patent cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 693-715, May.
    6. Feng Wang & Feng Hu & Rumeng Chen & Naixue Xiong, 2023. "HLEGF: An Effective Hypernetwork Community Detection Algorithm Based on Local Expansion and Global Fusion," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
    7. Sun, Zejun & Sun, Yanan & Chang, Xinfeng & Wang, Feifei & Pan, Zhongqiang & Wang, Guan & Liu, Jianfen, 2022. "Dynamic community detection based on the Matthew effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    8. Feng, Liang & Zhou, Cangqi & Zhao, Qianchuan, 2019. "A spectral method to find communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 424-437.
    9. Yu, Ping & Wang, Zhiping & Wang, Peiwen & Yin, Haofei & Wang, Jia, 2022. "Dynamic evolution of shipping network based on hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    10. Cheng, Qing & Lu, Xin & Liu, Zhong & Huang, Jincai & Cheng, Guangquan, 2016. "Spatial clustering with Density-Ordered tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 188-200.
    11. Shang, Jiaxing & Wu, Hongchun & Zhou, Shangbo & Zhong, Jiang & Feng, Yong & Qiang, Baohua, 2018. "IMPC: Influence maximization based on multi-neighbor potential in community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1085-1103.
    12. Jie Zhang & Pengpeng Yao & Hochung Wu & John H. Xin, 2023. "Automatic color pattern recognition of multispectral printed fabric images," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2747-2763, August.
    13. Zhu, Qian & Nie, Jianlong & Zhu, Zhiliang & Yu, Hai & Xue, Yang, 2018. "Modeling and analyzing cascading dynamics of the Internet based on local congestion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 298-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4738-:d:1002416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.