IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v276y2016icp384-393.html
   My bibliography  Save this article

Community detection in hypernetwork via Density-Ordered Tree partitionAuthor-Name: Cheng, Qing

Author

Listed:
  • Liu, Zhong
  • Huang, Jincai
  • Cheng, Guangquan

Abstract

Hypernetwork, as a useful representation of natural and social systems has received increasing interests from researchers. Community is crucial to understand the structural and functional properties of the hypernetworks. Here, we propose a new method to uncover the communities of hypernetworks. We construct a Density-Ordered Tree (DOT) to represent original data by combining density and distance, and the community detection in hypernetwork is converted to a DOT partition problem. Then, an anomaly detection strategy using box-plot rule is applied to partition DOT and judge whether there is a significant community structure in the hypernetwork. Moreover, visual inspection as a complementary approach of box-plot rule can effectively improve the effectiveness of community detection. Finally, the method is compared with existing methods in both synthetic and real-world networks.

Suggested Citation

  • Liu, Zhong & Huang, Jincai & Cheng, Guangquan, 2016. "Community detection in hypernetwork via Density-Ordered Tree partitionAuthor-Name: Cheng, Qing," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 384-393.
  • Handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:384-393
    DOI: 10.1016/j.amc.2015.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315300278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Estrada, Ernesto & Rodríguez-Velázquez, Juan A., 2006. "Subgraph centrality and clustering in complex hyper-networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 581-594.
    2. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    3. Jian-Wei Wang & Li-Li Rong & Qiu-Hong Deng & Ji-Yong Zhang, 2010. "Evolving hypernetwork model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 493-498, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Wang & Feng Hu & Rumeng Chen & Naixue Xiong, 2023. "HLEGF: An Effective Hypernetwork Community Detection Algorithm Based on Local Expansion and Global Fusion," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
    2. Hanlin You & Mengjun Li & Jiang Jiang & Bingfeng Ge & Xueting Zhang, 2017. "Evolution monitoring for innovation sources using patent cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 693-715, May.
    3. Yu, Ping & Wang, Zhiping & Wang, Peiwen & Yin, Haofei & Wang, Jia, 2022. "Dynamic evolution of shipping network based on hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Yu Wei & Sun Ning, 2018. "Establishment and Analysis of the Supernetwork Model for Nanjing Metro Transportation System," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    5. Jie Zhang & Pengpeng Yao & Hochung Wu & John H. Xin, 2023. "Automatic color pattern recognition of multispectral printed fabric images," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2747-2763, August.
    6. Cheng, Qing & Lu, Xin & Liu, Zhong & Huang, Jincai & Cheng, Guangquan, 2016. "Spatial clustering with Density-Ordered tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 188-200.
    7. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    8. Bo Zhang & Yifei Mi & Lele Zhang & Yuping Zhang & Maozhen Li & Qianqian Zhai & Meizi Li, 2022. "Dynamic Community Detection Method of a Social Network Based on Node Embedding Representation," Mathematics, MDPI, vol. 10(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suo, Qi & Guo, Jin-Li & Shen, Ai-Zhong, 2018. "Information spreading dynamics in hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 475-487.
    2. Wang, Zhiping & Yin, Haofei & Jiang, Xin, 2020. "Exploring the dynamic growth mechanism of social networks using evolutionary hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    3. Ma, Xiujuan & Ma, Fuxiang & Yin, Jun & Zhao, Haixing, 2018. "Cascading failures of k uniform hyper-network based on the hyper adjacent matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 281-289.
    4. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Guihai Yu & Renjie Wu & Xingfu Li, 2022. "The Connective Eccentricity Index of Hypergraphs," Mathematics, MDPI, vol. 10(23), pages 1-15, December.
    6. Park, Jinhee & Ahn, Hyeongjin & Kim, Dongjae & Park, Eunil, 2024. "GNN-IR: Examining graph neural networks for influencer recommendations in social media marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    7. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    8. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    10. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    11. Ricardo S. Santos & Jose Soares & Pedro Carmona Marques & Helena V. G. Navas & José Moleiro Martins, 2021. "Integrating Business, Social, and Environmental Goals in Open Innovation through Partner Selection," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    12. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    13. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    14. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    15. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    16. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Accominotti, Olivier & Lucena-Piquero, Delio & Ugolini, Stefano, 2023. "Intermediaries’ substitutability and financial network resilience: A hyperstructure approach," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    18. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    19. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:384-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.