IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4546-d990239.html
   My bibliography  Save this article

The Effect of Diameter and Position of Transverse Cylindrical Vortex Generators on Heat Transfer Improvement in a Wavy Channel

Author

Listed:
  • Stanislav Kotšmíd

    (Faculty of Technology, Technical University in Zvolen, Studentska 26, 960 01 Zvolen, Slovakia)

  • Zuzana Brodnianská

    (Faculty of Technology, Technical University in Zvolen, Studentska 26, 960 01 Zvolen, Slovakia)

Abstract

The present study investigates the effect of outer diameter (10 mm and 15 mm) and 5 positions of cylindrical vortex generators (CVGs) installed to the wavy channel in order to improve heat transfer parameters in conjunction with low-pressure drops. The wavy channels with and without CVGs are compared in terms of the local heat transfer coefficient, mean Nusselt number, Colburn factor, friction, and thermal performance for Re in the range of 857 to 8001. Furthermore, the effect of the cooling air flow direction (forward and backward) is assessed. Inserting the CVGs to the channel causes the enhancement of Nusselt numbers and Colburn factors for all CVGs positions and Re in comparison with the channels without CVGs. The maximum thermal performance factor TPF B = 0.8229 was achieved for the channel with CVGs position ‘5’ and 15 mm diameter, backward air flow, and Re = 1677. The backward air flow is more efficient compared with forward air flow since the cooling air gets into the valleys to a greater extent, and thus, better mixing of the fluid occurs. The numerical investigation, conducted with Ansys Fluent software, is compared with the experimental one acquired by holographic interferometry at good agreement of the local heat transfer coefficients. Finally, new correlating equations for the mean Nusselt number were created.

Suggested Citation

  • Stanislav Kotšmíd & Zuzana Brodnianská, 2022. "The Effect of Diameter and Position of Transverse Cylindrical Vortex Generators on Heat Transfer Improvement in a Wavy Channel," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4546-:d:990239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elshafei, E.A.M. & Awad, M.M. & El-Negiry, E. & Ali, A.G., 2010. "Heat transfer and pressure drop in corrugated channels," Energy, Elsevier, vol. 35(1), pages 101-110.
    2. Lioua Kolsi & Fatih Selimefendigil & Kaouther Ghachem & Talal Alqahtani & Salem Algarni, 2022. "Multiple Impinging Jet Cooling of a Wavy Surface by Using Double Porous Fins under Non-Uniform Magnetic Field," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    3. Wang, Jin & Yu, Kai & Ye, Mingzheng & Wang, Enyu & Wang, Wei & Sundén, Bengt, 2022. "Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Sang Dong & Kwon, Hyun Goo & Cho, Hyung Hee, 2010. "Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers," Energy, Elsevier, vol. 35(12), pages 5357-5364.
    2. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    3. Ye, Mingzheng & Du, Jianqiang & Wang, Jin & Chen, Lei & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2022. "Investigation on thermal performance of nanofluids in a microchannel with fan-shaped cavities and oval pin fins," Energy, Elsevier, vol. 260(C).
    4. Mardiana, A. & Riffat, S.B., 2013. "Review on physical and performance parameters of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 174-190.
    5. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    6. Li, Qi & Flamant, Gilles & Yuan, Xigang & Neveu, Pierre & Luo, Lingai, 2011. "Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4855-4875.
    7. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.
    8. Liu, X.P. & Niu, J.L., 2014. "An optimal design analysis method for heat recovery devices in building applications," Applied Energy, Elsevier, vol. 129(C), pages 364-372.
    9. Mohammed, Kafel A. & Abu Talib, A.R. & Nuraini, A.A. & Ahmed, K.A., 2017. "Review of forced convection nanofluids through corrugated facing step," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 234-241.
    10. Zhang, Tianyi & Chen, Lei & Wang, Jin, 2023. "Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm," Energy, Elsevier, vol. 269(C).
    11. Osorio, Julian D. & Hovsapian, Rob & Ordonez, Juan C., 2016. "Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under di," Energy, Elsevier, vol. 115(P1), pages 353-368.
    12. Močnik, Urban & Čikić, Ante & Muhič, Simon, 2024. "Numerical and experimental analysis of fluid flow and flow visualization at low Reynolds numbers in a dimple pattern plate heat exchanger," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4546-:d:990239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.