IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4312-d976073.html
   My bibliography  Save this article

Distributionally Robust Optimization Model for a Minimum Cost Consensus with Asymmetric Adjustment Costs Based on the Wasserstein Metric

Author

Listed:
  • Ziqi Wu

    (Alibaba, Hangzhou 311121, China)

  • Kai Zhu

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Shaojian Qu

    (School of Management Science and Technology, Nanjing University of Information Science and Technology, Nanjing 210000, China)

Abstract

When solving the problem of the minimum cost consensus with asymmetric adjustment costs, decision makers need to face various uncertain situations (such as individual opinions and unit adjustment costs for opinion modifications in the up and down directions). However, in the existing methods for dealing with this problem, robust optimization will lead to overly conservative results, and stochastic programming needs to know the exact probability distribution. In order to overcome these shortcomings, it is essential to develop a novelty consensus model. Thus, we propose three new minimum-cost consensus models with a distributionally robust method. Uncertain parameters (individual opinions, unit adjustment costs for opinion modifications in the up and down directions, the degree of tolerance, and the range of thresholds) were investigated by modeling the three new models, respectively. In the distributionally robust method, the construction of an ambiguous set is very important. Based on the historical data information, we chose the Wasserstein ambiguous set with the Wasserstein distance in this study. Then, three new models were transformed into a second-order cone programming problem to simplify the calculations. Further, a case from the EU Trade and Animal Welfare (TAW) program policy consultation was used to verify the practicability of the proposed models. Through comparison and sensitivity analysis, the numerical results showed that the three new models fit the complex decision environment better.

Suggested Citation

  • Ziqi Wu & Kai Zhu & Shaojian Qu, 2022. "Distributionally Robust Optimization Model for a Minimum Cost Consensus with Asymmetric Adjustment Costs Based on the Wasserstein Metric," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4312-:d:976073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xu & Ding, Zhijing & Hang, Jianqin & He, Qizhi, 2022. "How do stock price indices absorb the COVID-19 pandemic shocks?," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    2. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    3. Mohammed, Susan & Ringseis, Erika, 2001. "Cognitive Diversity and Consensus in Group Decision Making: The Role of Inputs, Processes, and Outcomes," Organizational Behavior and Human Decision Processes, Elsevier, vol. 85(2), pages 310-335, July.
    4. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Ma, Gang & Zheng, Junjun & Wei, Ju & Wang, Shilei & Han, Yefan, 2021. "Robust optimization strategies for seller based on uncertainty sets in context of sequential auction," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    6. Yuanming Li & Ying Ji & Shaojian Qu, 2022. "Consensus Building for Uncertain Large-Scale Group Decision-Making Based on the Clustering Algorithm and Robust Discrete Optimization," Group Decision and Negotiation, Springer, vol. 31(2), pages 453-489, April.
    7. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    8. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    9. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    10. Weijun Xu & Xin Chen & Yucheng Dong & Francisco Chiclana, 2021. "Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1239-1260, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    4. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    5. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    6. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    7. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    8. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    9. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    10. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    11. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
    12. Shuai Li & Shaojian Qu, 2023. "The Three-Level Supply Chain Finance Collaboration under Blockchain: Income Sharing with Shapley Value Cooperative Game," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    13. Erick Delage & Ahmed Saif, 2022. "The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 333-353, January.
    14. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.
    15. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    16. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    17. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    18. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    19. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    20. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4312-:d:976073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.