IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4265-d972868.html
   My bibliography  Save this article

Hill Climbing-Based Efficient Model for Link Prediction in Undirected Graphs

Author

Listed:
  • Haji Gul

    (Center for Excellence in Information Technology, Institute of Management Sciences, Peshawar 25000, Pakistan
    These authors contributed equally to this work.)

  • Feras Al-Obeidat

    (College of Technological Innovation, Zayed University, Abu Dhabi 144534, United Arab Emirates
    These authors contributed equally to this work.)

  • Adnan Amin

    (Center for Excellence in Information Technology, Institute of Management Sciences, Peshawar 25000, Pakistan
    These authors contributed equally to this work.)

  • Fernando Moreira

    (REMIT, IJP, Universidade Portucalense, 4200-072 Porto, Portugal
    IEETA, Universidade de Aveiro, 3810-193 Aveiro, Portugal
    These authors contributed equally to this work.)

  • Kaizhu Huang

    (Data Science Research Center, Division of Natural and Applied Sciences, Duke Kunshan University Duke Avenue No. 8, Kunshan, Suzhou 215316, China
    These authors contributed equally to this work.)

Abstract

Link prediction is a key problem in the field of undirected graph, and it can be used in a variety of contexts, including information retrieval and market analysis. By “undirected graphs”, we mean undirected complex networks in this study. The ability to predict new links in complex networks has a significant impact on society. Many complex systems can be modelled using networks. For example, links represent relationships (such as friendships, etc.) in social networks, whereas nodes represent users. Embedding methods, which produce the feature vector of each node in a graph and identify unknown links, are one of the newest approaches to link prediction. The Deep Walk algorithm is a common graph embedding approach that uses pure random walking to capture network structure. In this paper, we propose an efficient model for link prediction based on a hill climbing algorithm. It is used as a cost function. The lower the cost is, the higher the accuracy for link prediction between the source and destination node will be. Unlike other algorithms that predict links based on a single feature, it takes advantage of multiple features. The proposed method has been tested over nine publicly available datasets, and its performance has been evaluated by comparing it to other frequently used indexes. Our model outperforms all of these measures, as indicated by its higher prediction accuracy.

Suggested Citation

  • Haji Gul & Feras Al-Obeidat & Adnan Amin & Fernando Moreira & Kaizhu Huang, 2022. "Hill Climbing-Based Efficient Model for Link Prediction in Undirected Graphs," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4265-:d:972868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Hua & Huang, Jianbin & Cheng, Qiang & Sun, Heli & Wang, Baoli & Li, He, 2019. "Link prediction based on linear dynamical response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Qian-Ming Zhang & Ming-Sheng Shang & Linyuan Lü, 2010. "Similarity-Based Classification In Partially Labeled Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 813-824.
    3. Bodaghi, Amirhosein & Goliaei, Sama & Salehi, Mostafa, 2019. "The number of followings as an influential factor in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 167-184.
    4. Christian von Mering & Roland Krause & Berend Snel & Michael Cornell & Stephen G. Oliver & Stanley Fields & Peer Bork, 2002. "Comparative assessment of large-scale data sets of protein–protein interactions," Nature, Nature, vol. 417(6887), pages 399-403, May.
    5. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    6. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    7. Zhu, Yu-Xiao & Lü, Linyuan & Zhang, Qian-Ming & Zhou, Tao, 2012. "Uncovering missing links with cold ends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5769-5778.
    8. Aghabozorgi, Farshad & Khayyambashi, Mohammad Reza, 2018. "A new similarity measure for link prediction based on local structures in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 12-23.
    9. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    10. Pech, Ratha & Hao, Dong & Lee, Yan-Li & Yuan, Ye & Zhou, Tao, 2019. "Link prediction via linear optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilin Sun & Hua Tian & Runze Wang & Zehua Zhang, 2023. "Biomedical Interaction Prediction with Adaptive Line Graph Contrastive Learning," Mathematics, MDPI, vol. 11(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Peng Liu & Liang Gui & Huirong Wang & Muhammad Riaz, 2022. "A Two-Stage Deep-Learning Model for Link Prediction Based on Network Structure and Node Attributes," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    4. Mingshuo Nie & Dongming Chen & Dongqi Wang, 2022. "Graph Embedding Method Based on Biased Walking for Link Prediction," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
    5. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    6. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    7. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    8. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    10. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    11. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    12. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    13. Kumar, Ajay & Mishra, Shivansh & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction in complex networks based on Significance of Higher-Order Path Index (SHOPI)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
    15. Aziz, Furqan & Gul, Haji & Muhammad, Ishtiaq & Uddin, Irfan, 2020. "Link prediction using node information on local paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    17. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    18. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    19. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    20. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4265-:d:972868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.