IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119308179.html
   My bibliography  Save this article

Link prediction based on linear dynamical response

Author

Listed:
  • Gao, Hua
  • Huang, Jianbin
  • Cheng, Qiang
  • Sun, Heli
  • Wang, Baoli
  • Li, He

Abstract

Link prediction has attracted increasing research attention recently, which aims to predict missing links in complex networks. However, the existing link prediction methods are primarily based on network structures alone, which are incapable of capturing the dynamics defined on top of the fixed network structures. In this paper, we introduce a linear dynamical response-based similarity measure between nodes into link prediction task. To address the efficiency problem, we design a new iterative procedure to avoid the explicit computation of linear dynamical response (LDR) index. Empirically, we conduct extensive experiments on real networks from various fields. The results show that LDR index leads to promising predicting performance for link prediction.

Suggested Citation

  • Gao, Hua & Huang, Jianbin & Cheng, Qiang & Sun, Heli & Wang, Baoli & Li, He, 2019. "Link prediction based on linear dynamical response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119308179
    DOI: 10.1016/j.physa.2019.121397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119308179
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haji Gul & Feras Al-Obeidat & Adnan Amin & Fernando Moreira & Kaizhu Huang, 2022. "Hill Climbing-Based Efficient Model for Link Prediction in Undirected Graphs," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    2. Aziz, Furqan & Gul, Haji & Muhammad, Ishtiaq & Uddin, Irfan, 2020. "Link prediction using node information on local paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119308179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.