IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v153y2022icp1-20.html
   My bibliography  Save this article

Large deviations for stochastic equations in Hilbert spaces with non-Lipschitz drift

Author

Listed:
  • Pappalettera, Umberto

Abstract

We prove a Freidlin–Wentzell result for stochastic differential equations in infinite-dimensional Hilbert spaces perturbed by a cylindrical Wiener process. We do not assume the drift to be Lipschitz continuous, but only continuous with at most linear growth. Our result applies, in particular, to a large class of nonlinear fractional diffusion equations perturbed by a space–time white noise.

Suggested Citation

  • Pappalettera, Umberto, 2022. "Large deviations for stochastic equations in Hilbert spaces with non-Lipschitz drift," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 1-20.
  • Handle: RePEc:eee:spapps:v:153:y:2022:i:c:p:1-20
    DOI: 10.1016/j.spa.2022.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardon-Weber, Caroline, 1999. "Large deviations for a Burgers'-type SPDE," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 53-70, November.
    2. G. Prato & F. Flandoli & E. Priola & M. Röckner, 2015. "Strong Uniqueness for Stochastic Evolution Equations with Unbounded Measurable Drift Term," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1571-1600, December.
    3. Duan, Jinqiao & Millet, Annie, 2009. "Large deviations for the Boussinesq equations under random influences," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2052-2081, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salins, M., 2021. "Systems of small-noise stochastic reaction–diffusion equations satisfy a large deviations principle that is uniform over all initial data," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 159-194.
    2. Deugoué, G. & Tachim Medjo, T., 2023. "Large deviation for a 3D globally modified Cahn–Hilliard–Navier–Stokes model under random influences," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 33-71.
    3. Hakima Bessaih & Annie Millet, 2022. "Speed of Convergence of Time Euler Schemes for a Stochastic 2D Boussinesq Model," Mathematics, MDPI, vol. 10(22), pages 1-39, November.
    4. Gautier, Eric, 2005. "Uniform large deviations for the nonlinear Schrodinger equation with multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 1904-1927, December.
    5. Albeverio, Sergio & Mastrogiacomo, Elisa, 2022. "Large deviation principle for spatial economic growth model on networks," Journal of Mathematical Economics, Elsevier, vol. 103(C).
    6. Cai, Yujie & Huang, Jianhui & Maroulas, Vasileios, 2015. "Large deviations of mean-field stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 1-9.
    7. Foondun, Mohammud & Setayeshgar, Leila, 2017. "Large deviations for a class of semilinear stochastic partial differential equations," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 143-151.
    8. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
    9. Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.
    10. David Criens & Moritz Ritter, 2022. "On a Theorem by A.S. Cherny for Semilinear Stochastic Partial Differential Equations," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2052-2067, September.
    11. Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
    12. Ganguly, Arnab, 2018. "Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite-dimensional semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2179-2227.
    13. Du, Lihuai & Zhang, Ting, 2020. "Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1545-1567.
    14. Leila Setayeshgar, 2023. "Uniform large deviations for a class of semilinear stochastic partial differential equations driven by a Brownian sheet," Partial Differential Equations and Applications, Springer, vol. 4(1), pages 1-12, February.
    15. Gyöngy, István & Rovira, Carles, 2000. "On Lp-solutions of semilinear stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 83-108, November.
    16. David Criens, 2019. "Cylindrical Martingale Problems Associated with Lévy Generators," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1306-1359, September.
    17. Liu, Wei & Röckner, Michael & Zhu, Xiang-Chan, 2013. "Large deviation principles for the stochastic quasi-geostrophic equations," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3299-3327.
    18. Federica Masiero & Enrico Priola, 2024. "Partial Smoothing of the Stochastic Wave Equation and Regularization by Noise Phenomena," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2738-2774, September.
    19. Röckner, Michael & Wang, Feng-Yu & Wu, Liming, 2006. "Large deviations for stochastic generalized porous media equations," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1677-1689, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:153:y:2022:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.