IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/862403.html
   My bibliography  Save this article

Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation

Author

Listed:
  • Kanyuta Poochinapan
  • Ben Wongsaijai
  • Thongchai Disyadej

Abstract

Two numerical models to obtain the solution of the KdV equation are proposed. Numerical tools, compact fourth-order and standard fourth-order finite difference techniques, are applied to the KdV equation. The fundamental conservative properties of the equation are preserved by the finite difference methods. Linear stability analysis of two methods is presented by the Von Neumann analysis. The new methods give second- and fourth-order accuracy in time and space, respectively. The numerical experiments show that the proposed methods improve the accuracy of the solution significantly.

Suggested Citation

  • Kanyuta Poochinapan & Ben Wongsaijai & Thongchai Disyadej, 2014. "Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, December.
  • Handle: RePEc:hin:jnlmpe:862403
    DOI: 10.1155/2014/862403
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/862403.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/862403.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/862403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poochinapan, Kanyuta & Wongsaijai, Ben, 2023. "High-performance computing of structure-preserving algorithm for the coupled BBM system formulated by weighted compact difference operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 439-467.
    2. Teeranush Suebcharoen & Kanyuta Poochinapan & Ben Wongsaijai, 2022. "Bifurcation Analysis and Numerical Study of Wave Solution for Initial-Boundary Value Problem of the KdV-BBM Equation," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    3. Wongsaijai, Ben & Poochinapan, Kanyuta, 2021. "Optimal decay rates of the dissipative shallow water waves modeled by coupling the Rosenau-RLW equation and the Rosenau-Burgers equation with power of nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 405(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:862403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.