IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3423-d920440.html
   My bibliography  Save this article

On-Street Cruising for Parking Model in Consideration with Gaming Elements and Its Impact Analysis

Author

Listed:
  • Wei Wang

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

  • Yuwei Zhou

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

  • Jianbin Liu

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

  • Baofeng Sun

    (School of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130022, China)

Abstract

On-street cruising by drivers impedes the effectiveness of road traffic conditions and increases energy consumption and environmental impact. Existing models of on-street cruising for parking mainly embody those intrinsic on-street parking factors and disregard the extrinsic impacts from off-street parking gaming factors. This research focused on both the intrinsic and extrinsic elements, especially gaming factors, of off-street parking, i.e., the price of off-street parking, the waiting time of off-street parking, and the difference in walking time between their parking lots to their destinations. On-street cruising for a parking model is reconstructed in this paper in consideration with the equilibrium cruising time, i.e., the maximum tolerable cruise time after evaluating the cost of on-street and off-street parking. Correlation analysis showed that the off-street parking gaming factors were all positively related with the maximum tolerable cruise time. A simulation model was further presented for on-street cruising for the parking model by the cellular automata approach with real-world data. Simulation experiments demonstrated that the average speed of vehicles on the street increases by 9.858 km/h, the average delay decreases by 44.934 s, and the price of on-street parking increases by 4.5 CNY/h. The proposed on-street cruising for parking model proved effective by decreasing the maximum tolerable cruising time to bring significant improvements in average speed, average delay, and on-street cruising vehicles in road traffic flow.

Suggested Citation

  • Wei Wang & Yuwei Zhou & Jianbin Liu & Baofeng Sun, 2022. "On-Street Cruising for Parking Model in Consideration with Gaming Elements and Its Impact Analysis," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3423-:d:920440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shoup, Donald C., 2006. "Cruising for parking," Transport Policy, Elsevier, vol. 13(6), pages 479-486, November.
    2. Kobus, Martijn B.W. & Gutiérrez-i-Puigarnau, Eva & Rietveld, Piet & Van Ommeren, Jos N., 2013. "The on-street parking premium and car drivers' choice between street and garage parking," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 395-403.
    3. Yating Zhu & Xiaofei Ye & Jun Chen & Xingchen Yan & Tao Wang, 2020. "Impact of Cruising for Parking on Travel Time of Traffic Flow," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    4. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    5. Arnott, Richard & Rowse, John, 2013. "Curbside parking time limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 89-110.
    6. Anderson, Simon P. & de Palma, Andre, 2004. "The economics of pricing parking," Journal of Urban Economics, Elsevier, vol. 55(1), pages 1-20, January.
    7. Hu, Xiaojian & Hao, Xiatong & Wang, Han & Su, Ziyi & Zhang, Fang, 2020. "Research on on-street temporary parking effects based on cellular automaton model under the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Arnott, Richard & Inci, Eren & Rowse, John, 2015. "Downtown curbside parking capacity," Journal of Urban Economics, Elsevier, vol. 86(C), pages 83-97.
    9. Arnott, Richard & Williams, Parker, 2017. "Cruising for parking around a circle," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 357-375.
    10. Arnott, Richard & Inci, Eren, 2006. "An integrated model of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 60(3), pages 418-442, November.
    11. Shoup, Donald C., 2006. "Cruising for Parking," University of California Transportation Center, Working Papers qt55s7079f, University of California Transportation Center.
    12. Assemi, Behrang & Baker, Douglas & Paz, Alexander, 2020. "Searching for on-street parking: An empirical investigation of the factors influencing cruise time," Transport Policy, Elsevier, vol. 97(C), pages 186-196.
    13. Huanmei Qin & Xiuhan Yang & Yao-Jan Wu & Hongzhi Guan & Pengfei Wang & Nasrin Shahinpoor, 2020. "Analysis of parking cruising behaviour and parking location choice," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(7), pages 717-734, October.
    14. Arnott, Richard & Rowse, John, 2009. "Downtown parking in auto city," Regional Science and Urban Economics, Elsevier, vol. 39(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Cosmin Stănică & Petre Anghelescu, 2023. "Cryptographic Algorithm Based on Hybrid One-Dimensional Cellular Automata," Mathematics, MDPI, vol. 11(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inci, Eren & Lindsey, Robin, 2015. "Garage and curbside parking competition with search congestion," Regional Science and Urban Economics, Elsevier, vol. 54(C), pages 49-59.
    2. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    3. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    4. Xinliu Sui & Xiaofei Ye & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Microscopic Simulating the Impact of Cruising for Parking on Traffic Efficiency and Emission with Parking-and-Visit Test Data," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    5. Arnott, Richard & Williams, Parker, 2017. "Cruising for parking around a circle," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 357-375.
    6. Arnott, Richard & Rowse, John, 2013. "Curbside parking time limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 89-110.
    7. Arnott, Richard & Inci, Eren & Rowse, John, 2015. "Downtown curbside parking capacity," Journal of Urban Economics, Elsevier, vol. 86(C), pages 83-97.
    8. Eren Inci & Jos van Ommeren & Martijn Kobus, 2017. "The external cruising costs of parking," Journal of Economic Geography, Oxford University Press, vol. 17(6), pages 1301-1323.
    9. Kevin Hasker & Eren Inci, 2014. "Free Parking For All In Shopping Malls," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(4), pages 1281-1304, November.
    10. Arnott, Richard, 2014. "On the optimal target curbside parking occupancy rate," Economics of Transportation, Elsevier, vol. 3(2), pages 133-144.
    11. Francis Ostermeijer & Hans RA Koster & Leonardo Nunes & Jos van Ommeren, 2021. "Citywide parking policy and traffic: Evidence from Amsterdam," Tinbergen Institute Discussion Papers 21-015/VIII, Tinbergen Institute.
    12. Xiaojuan Yu & Vincent A.C. van den Berg, 2024. "Human-driven vehicles’ cruising versus autonomous vehicles’ back- and-forth congestion: The effects on traveling, parking and congestion," Tinbergen Institute Discussion Papers 24-032/VIII, Tinbergen Institute.
    13. Ostermeijer, Francis & Koster, Hans & Nunes, Leonardo & van Ommeren, Jos, 2022. "Citywide parking policy and traffic: Evidence from Amsterdam," Journal of Urban Economics, Elsevier, vol. 128(C).
    14. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    15. Tian, Qiong & Yang, Li & Wang, Chenlan & Huang, Hai-Jun, 2018. "Dynamic pricing for reservation-based parking system: A revenue management method," Transport Policy, Elsevier, vol. 71(C), pages 36-44.
    16. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    17. Zheng, Nan & Geroliminis, Nikolas, 2016. "Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 36-58.
    18. Gössling, Stefan & Humpe, Andreas & Hologa, Rafael & Riach, Nils & Freytag, Tim, 2022. "Parking violations as an economic gamble for public space," Transport Policy, Elsevier, vol. 116(C), pages 248-257.
    19. Abdelghaffar, Hossam M. & Batista, S.F.A. & Rehman, Abdur & Cao, Jin & Menéndez, Mónica & Jabari, Saif Eddin, 2024. "Comparison of probabilistic cruising-for-parking time estimation models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    20. Groote, Jesper De & Ommeren, Jos Van & Koster, Hans R.A., 2016. "Car ownership and residential parking subsidies: Evidence from Amsterdam," Economics of Transportation, Elsevier, vol. 6(C), pages 25-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3423-:d:920440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.