IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3087-d899437.html
   My bibliography  Save this article

Moore–Gibson–Thompson Photothermal Model with a Proportional Caputo Fractional Derivative for a Rotating Magneto-Thermoelastic Semiconducting Material

Author

Listed:
  • Osama Moaaz

    (Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51482, Saudi Arabia)

  • Ahmed E. Abouelregal

    (Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayat 77455, Saudi Arabia
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Meshari Alesemi

    (Department of Mathematics, College of Science, University of Bisha, Bisha 61922, Saudi Arabia)

Abstract

By considering the Moore–Gibson–Thompson (MGT) equation, the current work introduces a modified fractional photothermal model. The construction model is based on the proportional Caputo fractional derivative, which is a new definition of the fractional derivative that is simple and works well. In addition, the theory of heat transfer in semiconductor materials was used in the context of optical excitation transfer and plasma processes. The proposed model was used to investigate the interaction of light and heat within a magnetized semiconductor sphere rotating at a constant angular speed. The Laplace transform was used to obtain solutions for optical excitation induced by physical field variables. Using a numerical method, Laplace transforms can be reversed. The figures show the effects of carrier lifetime, conformable fractional operator, and rotation on thermal and mechanical plasma waves, which are shown in the graphs. The theory’s predictions were compared and extensively tested against other existing models.

Suggested Citation

  • Osama Moaaz & Ahmed E. Abouelregal & Meshari Alesemi, 2022. "Moore–Gibson–Thompson Photothermal Model with a Proportional Caputo Fractional Derivative for a Rotating Magneto-Thermoelastic Semiconducting Material," Mathematics, MDPI, vol. 10(17), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3087-:d:899437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauhar Rahman & Kottakkaran Sooppy Nisar & Thabet Abdeljawad, 2020. "Certain Hadamard Proportional Fractional Integral Inequalities," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    2. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doaa Atta & Ahmed E. Abouelregal & Fahad Alsharari, 2022. "Thermoelastic Analysis of Functionally Graded Nanobeams via Fractional Heat Transfer Model with Nonlocal Kernels," Mathematics, MDPI, vol. 10(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdellatif Ben Makhlouf & Lassaad Mchiri & Hakeem A. Othman & Hafedh M. S. Rguigui & Salah Boulaaras, 2023. "Proportional Itô–Doob Stochastic Fractional Order Systems," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    2. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
    4. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    5. Gupta, Sandipan & Ranta, Shivani, 2022. "Legendre wavelet based numerical approach for solving a fractional eigenvalue problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Acay, Bahar & Bas, Erdal & Abdeljawad, Thabet, 2020. "Fractional economic models based on market equilibrium in the frame of different type kernels," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Fall, Aliou Niang & Ndiaye, Seydou Nourou & Sene, Ndolane, 2019. "Black–Scholes option pricing equations described by the Caputo generalized fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 108-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3087-:d:899437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.