IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2723-d877879.html
   My bibliography  Save this article

General Designs Reveal a Purine-Pyrimidine Structural Code in Human DNA

Author

Listed:
  • Dana Cohen

    (Ronin Institute, Montclair, NJ 07043, USA)

Abstract

The human genome carries a vast amount of information within its DNA sequences. The chemical bases A, T, C, and G are the basic units of information content, that are arranged into patterns and codes. Expansive areas of the genome contain codes that are not yet well understood. To decipher these, mathematical and computational tools are applied here to study genomic signatures or general designs of sequences. A novel binary components analysis is devised and utilized. This seeks to isolate the physical and chemical properties of DNA bases, which reveals sequence design and function. Here, information theory tools break down the information content within DNA bases, in order to study them in isolation for their genomic signatures and non-random properties. In this way, the RY (purine/pyrimidine), WS (weak/strong), and KM (keto/amino) general designs are observed in the sequences. The results show that RY, KM, and WS components have a similar and stable overall profile across all human chromosomes. It reveals that the RY property of a sequence is most distant from randomness in the human genome with respect to the genomic signatures. This is true across all human chromosomes. It is concluded that there exists a widespread potential RY code, and furthermore, that this is likely a structural code. Ascertaining this feature of general design, and potential RY structural code has far-reaching implications. This is because it aids in the understanding of cell biology, growth, and development, as well as downstream in the study of human disease and potential drug design.

Suggested Citation

  • Dana Cohen, 2022. "General Designs Reveal a Purine-Pyrimidine Structural Code in Human DNA," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2723-:d:877879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy J. Richmond & Curt A. Davey, 2003. "The structure of DNA in the nucleosome core," Nature, Nature, vol. 423(6936), pages 145-150, May.
    2. Leroy Hood & David Galas, 2003. "The digital code of DNA," Nature, Nature, vol. 421(6921), pages 444-448, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Frumkin & Adam Wasserstrom & Shai Kaplan & Uriel Feige & Ehud Shapiro, 2005. "Genomic Variability within an Organism Exposes Its Cell Lineage Tree," PLOS Computational Biology, Public Library of Science, vol. 1(5), pages 1-13, October.
    2. Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
    3. Michaël Noë & Dimitrios Mathios & Akshaya V. Annapragada & Shashikant Koul & Zacharia H. Foda & Jamie E. Medina & Stephen Cristiano & Christopher Cherry & Daniel C. Bruhm & Noushin Niknafs & Vilmos Ad, 2024. "DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Luca Marchetti & Rosario Lombardo & Corrado Priami, 2017. "HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    5. Xinyun Jing & Niubing Zhang & Xiaojuan Zhou & Ping Chen & Jie Gong & Kaixiang Zhang & Xueting Wu & Wenjuan Cai & Bang-Ce Ye & Pei Hao & Guo-ping Zhao & Sheng Yang & Xuan Li, 2024. "Creating a bacterium that forms eukaryotic nucleosome core particles," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2723-:d:877879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.