IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2696-d875917.html
   My bibliography  Save this article

Fairness-Aware Predictive Graph Learning in Social Networks

Author

Listed:
  • Lei Wang

    (School of Software, Dalian University of Technology, Dalian 116620, China)

  • Shuo Yu

    (School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China)

  • Falih Gozi Febrinanto

    (Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia)

  • Fayez Alqahtani

    (Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 12372, Saudi Arabia)

  • Tarek E. El-Tobely

    (Computers and Control Department, Tanta University, Tanta 31527, Egypt)

Abstract

Predictive graph learning approaches have been bringing significant advantages in many real-life applications, such as social networks, recommender systems, and other social-related downstream tasks. For those applications, learning models should be able to produce a great prediction result to maximize the usability of their application. However, the paradigm of current graph learning methods generally neglects the differences in link strength, leading to discriminative predictive results, resulting in different performance between tasks. Based on that problem, a fairness-aware predictive learning model is needed to balance the link strength differences and not only consider how to formulate it. To address this problem, we first formally define two biases (i.e., Preference and Favoritism) that widely exist in previous representation learning models. Then, we employ modularity maximization to distinguish strong and weak links from the quantitative perspective. Eventually, we propose a novel predictive learning framework entitled ACE that first implements the link strength differentiated learning process and then integrates it with a dual propagation process. The effectiveness and fairness of our proposed ACE have been verified on four real-world social networks. Compared to nine different state-of-the-art methods, ACE and its variants show better performance. The ACE framework can better reconstruct networks, thus also providing a high possibility of resolving misinformation in graph-structured data.

Suggested Citation

  • Lei Wang & Shuo Yu & Falih Gozi Febrinanto & Fayez Alqahtani & Tarek E. El-Tobely, 2022. "Fairness-Aware Predictive Graph Learning in Social Networks," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2696-:d:875917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tu, Jing, 2020. "The role of dyadic social capital in enhancing collaborative knowledge creation," Journal of Informetrics, Elsevier, vol. 14(2).
    2. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    3. Rêgo, Leandro Chaves & dos Santos, Andrea Maria, 2019. "Co-authorship model with link strength," European Journal of Operational Research, Elsevier, vol. 272(2), pages 587-594.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    2. Yifei Zhou & Shaoyong Li & Yaping Liu, 2020. "Graph-based Method for App Usage Prediction with Attributed Heterogeneous Network Embedding," Future Internet, MDPI, vol. 12(3), pages 1-16, March.
    3. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    4. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    6. Yoon, Jisung & Park, Jinseo & Yun, Jinhyuk & Jung, Woo-Sung, 2023. "Quantifying knowledge synchronization with the network-driven approach," Journal of Informetrics, Elsevier, vol. 17(4).
    7. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    8. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    9. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    10. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Bikramjit Das & Tiandong Wang & Gengling Dai, 2022. "Asymptotic Behavior of Common Connections in Sparse Random Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2071-2092, September.
    13. Xiaowen Xi & Jiaqi Wei & Ying Guo & Weiyu Duan, 2022. "Academic collaborations: a recommender framework spanning research interests and network topology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6787-6808, November.
    14. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    15. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    16. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    17. Li, Yongli & Luo, Peng & Pin, Paolo, 2021. "Link value, market scenario and referral networks," Journal of Economic Behavior & Organization, Elsevier, vol. 181(C), pages 135-155.
    18. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    19. Chunjiang Liu & Yikun Han & Haiyun Xu & Shihan Yang & Kaidi Wang & Yongye Su, 2024. "A Community Detection and Graph-Neural-Network-Based Link Prediction Approach for Scientific Literature," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    20. Chengjun Zhang & Jin Liu & Yanzhen Qu & Tianqi Han & Xujun Ge & An Zeng, 2018. "Enhancing the robustness of recommender systems against spammers," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2696-:d:875917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.