IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2580-d871050.html
   My bibliography  Save this article

Partial Least Squares Regression for Binary Responses and Its Associated Biplot Representation

Author

Listed:
  • Laura Vicente-Gonzalez

    (Department of Statistics, Universidad de Salamanca, 37008 Salamanca, Spain)

  • Jose Luis Vicente-Villardon

    (Department of Statistics, Universidad de Salamanca, 37008 Salamanca, Spain)

Abstract

In this paper, we propose a generalization of Partial Least Squares Regression (PLS-R) for a matrix of several binary responses and a a set of numerical predictors. We call the method Partial Least Squares Binary Logistic Regression (PLS-BLR). That is equivalent to a PLS-2 model for binary responses. Biplot and even triplot graphical representations for visualizing PLS-BLR models are described, and an application to real data is presented. Software packages for the calculation of the main results are also provided. We conclude that the proposed method and its visualization using triplots are powerful tools for the interpretation of the relations among predictors and responses.

Suggested Citation

  • Laura Vicente-Gonzalez & Jose Luis Vicente-Villardon, 2022. "Partial Least Squares Regression for Binary Responses and Its Associated Biplot Representation," Mathematics, MDPI, vol. 10(15), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2580-:d:871050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Opeoluwa F. Oyedele & Sugnet Lubbe, 2015. "The construction of a partial least-squares biplot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2449-2460, November.
    2. Bastien, Philippe & Vinzi, Vincenzo Esposito & Tenenhaus, Michel, 2005. "PLS generalised linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 17-46, January.
    3. Sugnet Gardner-Lubbe & Niël Le Roux & John Gowers, 2008. "Measures of fit in principal component and canonical variate analyses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 947-965.
    4. Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    5. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    6. Contreras-Reyes, Javier E. & López Quintero, Freddy O. & Wiff, Rodrigo, 2018. "Bayesian modeling of individual growth variability using back-calculation: Application to pink cusk-eel (Genypterus blacodes) off Chile," Ecological Modelling, Elsevier, vol. 385(C), pages 145-153.
    7. Michel Jose Anzanello & Flavio Sanson Fogliatto, 2014. "A review of recent variable selection methods in industrial and chemometrics applications," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 8(5), pages 619-645.
    8. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Melillanca & Milton Ramírez & Eric Forcael, 2023. "Model of Key Factors in the Sustainable Growth of Small and Medium-Sized Enterprises Belonging to the First Nations," Sustainability, MDPI, vol. 15(11), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meisam Moghimbeygi & Anahita Nodehi, 2022. "Multinomial Principal Component Logistic Regression on Shape Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 578-599, November.
    2. Aziza Usmanova & Ahmed Aziz & Dilshodjon Rakhmonov & Walid Osamy, 2022. "Utilities of Artificial Intelligence in Poverty Prediction: A Review," Sustainability, MDPI, vol. 14(21), pages 1-39, October.
    3. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    4. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    5. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    6. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    7. Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
    8. Matthew Herland & Richard A. Bauder & Taghi M. Khoshgoftaar, 2020. "Approaches for identifying U.S. medicare fraud in provider claims data," Health Care Management Science, Springer, vol. 23(1), pages 2-19, March.
    9. Paolo Cimbali & Marco De Leonardis & Alessio Fiume & Barbara La Ganga & Luciana Meoli & Marco Orlandi, 2023. "A decision-making rule to detect insufficient data quality - an application of statistical learning techniques to the non-performing loans banking data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Post-pandemic landscape for central bank statistics, volume 58, Bank for International Settlements.
    10. Wenfa Li & Hongzhe Liu & Peng Yang & Wei Xie, 2016. "Supporting Regularized Logistic Regression Privately and Efficiently," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    11. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    12. Kadri Ulas Akay, 2014. "A graphical evaluation of logistic ridge estimator in mixture experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1217-1232, June.
    13. Marco-Antonio Moreno-Ibarra & Yenny Villuendas-Rey & Miltiadis D. Lytras & Cornelio Yáñez-Márquez & Julio-César Salgado-Ramírez, 2021. "Classification of Diseases Using Machine Learning Algorithms: A Comparative Study," Mathematics, MDPI, vol. 9(15), pages 1-21, July.
    14. Lambert-Lacroix, Sophie & Peyre, Julie, 2006. "Local likelihood regression in generalized linear single-index models with applications to microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2091-2113, December.
    15. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    16. Li, Guoqi & Tang, Pei & Meng, Ziyang & Wen, Changyun & Pei, Jing & Shi, Luping, 2018. "Optimization on matrix manifold based on gradient information and its applications in network control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 481-500.
    17. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    18. K. Van Deun & P. J. F. Groenen, 2005. "Majorization Algorithms for Inspecting Circles, Ellipses, Squares, Rectangles, and Rhombi," Operations Research, INFORMS, vol. 53(6), pages 957-967, December.
    19. Tenenhaus, Arthur & Giron, Alain & Viennet, Emmanuel & Bera, Michel & Saporta, Gilbert & Fertil, Bernard, 2007. "Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4083-4100, May.
    20. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2580-:d:871050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.