IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2351-d856033.html
   My bibliography  Save this article

An Efficient Parallel Reptile Search Algorithm and Snake Optimizer Approach for Feature Selection

Author

Listed:
  • Ibrahim Al-Shourbaji

    (Department of Computer and Network Engineering, Jazan University, Jazan 45142, Saudi Arabia
    Department of Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK)

  • Pramod H. Kachare

    (Department of Electronics & Telecomm, Engineering, Ramrao Adik Institute of Technology, Nerul, Navi Mumbai 400706, Maharashtra, India)

  • Samah Alshathri

    (Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Salahaldeen Duraibi

    (Department of Computer and Network Engineering, Jazan University, Jazan 45142, Saudi Arabia)

  • Bushra Elnaim

    (Department of Computer Science, College of Science and Humanities in Al-Sulail, Prince Sattam bin Abdulaziz University, Kharj 16278, Saudi Arabia)

  • Mohamed Abd Elaziz

    (Faculty of Science & Engineering, Galala University, Suze 435611, Egypt
    Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman 346, United Arab Emirates
    Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt)

Abstract

Feature Selection (FS) is a major preprocessing stage which aims to improve Machine Learning (ML) models’ performance by choosing salient features, while reducing the computational cost. Several approaches are presented to select the most Optimal Features Subset (OFS) in a given dataset. In this paper, we introduce an FS-based approach named Reptile Search Algorithm–Snake Optimizer (RSA-SO) that employs both RSA and SO methods in a parallel mechanism to determine OFS. This mechanism decreases the chance of the two methods to stuck in local optima and it boosts the capability of both of them to balance exploration and explication. Numerous experiments are performed on ten datasets taken from the UCI repository and two real-world engineering problems to evaluate RSA-SO. The obtained results from the RSA-SO are also compared with seven popular Meta-Heuristic (MH) methods for FS to prove its superiority. The results show that the developed RSA-SO approach has a comparative performance to the tested MH methods and it can provide practical and accurate solutions for engineering optimization problems.

Suggested Citation

  • Ibrahim Al-Shourbaji & Pramod H. Kachare & Samah Alshathri & Salahaldeen Duraibi & Bushra Elnaim & Mohamed Abd Elaziz, 2022. "An Efficient Parallel Reptile Search Algorithm and Snake Optimizer Approach for Feature Selection," Mathematics, MDPI, vol. 10(13), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2351-:d:856033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ikeda, Shintaro & Nagai, Tatsuo, 2021. "A novel optimization method combining metaheuristics and machine learning for daily optimal operations in building energy and storage systems," Applied Energy, Elsevier, vol. 289(C).
    2. Ibrahim Al-Shourbaji & Na Helian & Yi Sun & Samah Alshathri & Mohamed Abd Elaziz, 2022. "Boosting Ant Colony Optimization with Reptile Search Algorithm for Churn Prediction," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    3. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    3. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    4. Georgios Marinakos & Sophia Daskalaki, 2017. "Imbalanced customer classification for bank direct marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(1), pages 14-30, March.
    5. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    6. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    7. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    8. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    9. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    10. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    11. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    12. Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
    13. Coussement, Kristof & Buckinx, Wouter, 2011. "A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application," European Journal of Operational Research, Elsevier, vol. 214(3), pages 732-738, November.
    14. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    15. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    16. Smolenski, Robert & Szczesniak, Pawel & Drozdz, Wojciech & Kasperski, Lukasz, 2022. "Advanced metering infrastructure and energy storage for location and mitigation of power quality disturbances in the utility grid with high penetration of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.
    18. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
    19. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    20. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2351-:d:856033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.