IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2187-d845792.html
   My bibliography  Save this article

Analysis of Machine Learning Approaches’ Performance in Prediction Problems with Human Activity Patterns

Author

Listed:
  • Ricardo Torres-López

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

  • David Casillas-Pérez

    (Department of Signal Processing and Communications, Universidad Rey Juan Carlos, 28942 Fuenlabrada, Spain)

  • Jorge Pérez-Aracil

    (Department of Computer Systems Engineering, Universidad Politécnica de Madrid, 28038 Madrid, Spain)

  • Laura Cornejo-Bueno

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

  • Enrique Alexandre

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

  • Sancho Salcedo-Sanz

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

Abstract

Prediction problems in timed datasets related to human activities are especially difficult to solve, because of the specific characteristics and the scarce number of predictive (input) variables available to tackle these problems. In this paper, we try to find out whether Machine Learning (ML) approaches can be successfully applied to these problems. We deal with timed datasets with human activity patterns, in which the input variables are exclusively related to the day or type of day when the prediction is carried out and, usually, to the meteorology of those days. These problems with a marked human activity pattern frequently appear in mobility and traffic-related problems, delivery prediction (packets, food), and many other activities, usually in cities. We evaluate the performance in these problems of different ML methods such as artificial neural networks (multi-layer perceptrons, extreme learning machines) and support vector regression algorithms, together with an Analogue-type (KNN) approach, which serves as a baseline algorithm and provides information about when it is expected that ML approaches will fail, by looking for similar situations in the past. The considered ML algorithms are evaluated in four real prediction problems with human activity patterns, such as school absences, bike-sharing demand, parking occupation, and packets delivered in a post office. The results obtained show the good performance of the ML algorithms, revealing that they can deal with scarce information in all the problems considered. The results obtained have also revealed the importance of including meteorology as the input variables, showing that meteorology is frequently behind demand peaks or valleys in this kind of problem. Finally, we show that having a number of similar situations in the past (training set) prevents ML algorithms from making important mistakes in the prediction obtained.

Suggested Citation

  • Ricardo Torres-López & David Casillas-Pérez & Jorge Pérez-Aracil & Laura Cornejo-Bueno & Enrique Alexandre & Sancho Salcedo-Sanz, 2022. "Analysis of Machine Learning Approaches’ Performance in Prediction Problems with Human Activity Patterns," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2187-:d:845792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2018. "The death of a transport regime? The future of electric bicycles and transportation pathways for sustainable mobility in China," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 255-267.
    2. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    3. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
    4. Opoku, Eric Evans Osei & Kufuor, Nana Kwabena & Manu, Sylvester Adasi, 2021. "Gender, electricity access, renewable energy consumption and energy efficiency," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Veronika Harantová & Alica Kalašová & Simona Skřivánek Kubíková & Jaroslav Mazanec & Radomíra Jordová, 2022. "The Impact of Mobility on Shopping Preferences during the COVID-19 Pandemic: The Evidence from the Slovak Republic," Mathematics, MDPI, vol. 10(9), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    3. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    4. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    5. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    6. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).
    7. Beltrami, Filippo & Fontini, Fulvio & Grossi, Luigi, 2021. "The value of carbon emission reduction induced by Renewable Energy Sources in the Italian power market," Ecological Economics, Elsevier, vol. 189(C).
    8. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    10. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    11. Fianu, Emmanuel Senyo & Ahelegbey, Daniel Felix & Grossi, Luigi, 2022. "Modeling risk contagion in the Italian zonal electricity market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 656-679.
    12. Pappa, Areti & Theodoropoulos, Ioannis & Galmarini, Stefano & Kioutsioukis, Ioannis, 2023. "Analog versus multi-model ensemble forecasting: A comparison for renewable energy resources," Renewable Energy, Elsevier, vol. 205(C), pages 563-573.
    13. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    14. Djeunankan, Ronald & Njangang, Henri & Tadadjeu, Sosson & Kamguia, Brice, 2023. "Remittances and energy poverty: Fresh evidence from developing countries," Utilities Policy, Elsevier, vol. 81(C).
    15. Hocaoglu, Fatih Onur & Serttas, Fatih, 2017. "A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 635-643.
    16. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    17. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    18. Brice Kamguia & Ronald Djeunankan & Sosson Tadadjeu & Henri Njangang, 2024. "Does macroeconomic instability hamper access to electricity? Evidence from developing countries," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 32(2), pages 387-414, April.
    19. Srđan Skok & Ahmed Mutapčić & Renata Rubesa & Mario Bazina, 2020. "Transmission Power System Modeling by Using Aggregated Distributed Generation Model Based on a TSO—DSO Data Exchange Scheme," Energies, MDPI, vol. 13(15), pages 1-15, August.
    20. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2187-:d:845792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.