IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2075-d839579.html
   My bibliography  Save this article

Estimating the Time Reproduction Number in Kupang City Indonesia, 2016–2020, and Assessing the Effects of Vaccination and Different Wolbachia Strains on Dengue Transmission Dynamics

Author

Listed:
  • Meksianis Z. Ndii

    (Department of Mathematics, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang 85001, Nusa Tenggara Timur, Indonesia)

  • Lazarus Kalvein Beay

    (Department of Education and Culture, Provincial Government of Moluccas, Ambon 97125, North Maluku, Indonesia
    Postdoctoral Program, Department of Mathematics, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21 Jatinangor, Kab. Sumedang 45363, Jawa Barat, Indonesia)

  • Nursanti Anggriani

    (Department of Mathematics, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21 Jatinangor, Kab. Sumedang 45363, Jawa Barat, Indonesia)

  • Karolina N. Nukul

    (Department of Mathematics, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang 85001, Nusa Tenggara Timur, Indonesia)

  • Bertha S. Djahi

    (Department of Computer Sciences, Faculty of Science and Engineering, University of Nusa Cendana, Kupang 85001, Nusa Tenggara Timur, Indonesia)

Abstract

The use of a vaccine and Wolbachia bacterium have been proposed as new strategies against dengue. However, the performance of Wolbachia in reducing dengue incidence may depend on the Wolbachia strains. Therefore, in this paper, the performance of two Wolbachia strains which are WMel and WAu , in combination with the vaccine, has been assessed by using an age-dependent mathematical model. An effective reproduction number has been calculated using the Extended Kalman Filter (EKF) algorithm. The results revealed that the time reproduction number varies overtime with the highest one being around 2.75. Moreover, it has also found that use of the vaccine and Wolbachia possibly leads to dengue elimination. Furthermore, vaccination on one group only reduces dengue incidence in that group but dengue infection in the other group is still high. Furthermore, the performance of the WAu strain is better than the WMel strain in reducing dengue incidence. However, both strains can still be used for dengue elimination strategies depending on the level of loss of Wolbachia infections in both strains.

Suggested Citation

  • Meksianis Z. Ndii & Lazarus Kalvein Beay & Nursanti Anggriani & Karolina N. Nukul & Bertha S. Djahi, 2022. "Estimating the Time Reproduction Number in Kupang City Indonesia, 2016–2020, and Assessing the Effects of Vaccination and Different Wolbachia Strains on Dengue Transmission Dynamics," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2075-:d:839579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. Walker & P. H. Johnson & L. A. Moreira & I. Iturbe-Ormaetxe & F. D. Frentiu & C. J. McMeniman & Y. S. Leong & Y. Dong & J. Axford & P. Kriesner & A. L. Lloyd & S. A. Ritchie & S. L. O’Neill & A. A., 2011. "The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations," Nature, Nature, vol. 476(7361), pages 450-453, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    2. Xingtong Liu & Yuanshun Tan & Bo Zheng, 2022. "Dynamic Behavior of an Interactive Mosquito Model under Stochastic Interference," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
    3. Qiming Huang & Lijie Chang & Zhaowang Zhang & Bo Zheng, 2023. "Global Dynamics for Competition between Two Wolbachia Strains with Bidirectional Cytoplasmic Incompatibility," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    4. Turelli, Michael & Barton, Nicholas H., 2017. "Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti," Theoretical Population Biology, Elsevier, vol. 115(C), pages 45-60.
    5. Kristina K. Gonzales & Immo A. Hansen, 2016. "Artificial Diets for Mosquitoes," IJERPH, MDPI, vol. 13(12), pages 1-13, December.
    6. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    7. Kalin M. Skinner & Jacob Underwood & Arnab Ghosh & Adela S. Oliva Chavez & Corey L. Brelsfoard, 2022. "Wolbachia Impacts Anaplasma Infection in Ixodes scapularis Tick Cells," IJERPH, MDPI, vol. 19(3), pages 1-9, January.
    8. Li, Yazhi & Wang, Yan & Liu, Lili, 2023. "Optimal control of dengue vector based on a reaction–diffusion model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 250-270.
    9. Vanessa M. Macias & Johanna R. Ohm & Jason L. Rasgon, 2017. "Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?," IJERPH, MDPI, vol. 14(9), pages 1-30, September.
    10. Lijie Chang & Yantao Shi & Bo Zheng, 2021. "Existence and Uniqueness of Nontrivial Periodic Solutions to a Discrete Switching Model," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    11. Dianavinnarasi, J. & Raja, R. & Alzabut, J. & Cao, J. & Niezabitowski, M. & Bagdasar, O., 2022. "Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 462-485.

    More about this item

    Keywords

    dengue; vaccination; model; Wolbachia;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2075-:d:839579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.