IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1791-d822640.html
   My bibliography  Save this article

Prediction of Whole Social Electricity Consumption in Jiangsu Province Based on Metabolic FGM (1, 1) Model

Author

Listed:
  • Siyu Zhang

    (College of Information Management, Nanjing Agricultural University, Nanjing 210031, China)

  • Liusan Wu

    (College of Information Management, Nanjing Agricultural University, Nanjing 210031, China
    School of Information Management, Nanjing University, Nanjing 210023, China)

  • Ming Cheng

    (College of Information Management, Nanjing Agricultural University, Nanjing 210031, China)

  • Dongqing Zhang

    (College of Information Management, Nanjing Agricultural University, Nanjing 210031, China)

Abstract

The achievement of the carbon peaking and carbon neutrality targets requires the adjustment of the energy structure, in which the dual-carbon progress of the power industry will directly affect the realization process of the goal. In such terms, an accurate demand forecast is imperative for the government and enterprises’ decision makers to develop an optimal strategy for electric energy planning work in advance. According to the data of the whole social electricity consumption in Jiangsu Province of China from 2015 to 2019, this paper uses the improved particle swarm optimization algorithm to calculate the fractional-order r of the FGM (1, 1) model and establishes a metabolic FGM (1, 1) model to predict the whole social electricity consumption in Jiangsu Province of China from 2020 to 2023. The results show that in the next few years the whole social electricity consumption in Jiangsu Province will show a growth trend, but the growth rate will slow down generally. It can be seen that the prediction accuracy of the metabolic FGM (1, 1) model is higher than that of the GM (1, 1) and FGM (1, 1) models. In addition, the paper analyzes the reasons for the changes in the whole society electricity consumption in Jiangsu Province of China and provides support for government decision making.

Suggested Citation

  • Siyu Zhang & Liusan Wu & Ming Cheng & Dongqing Zhang, 2022. "Prediction of Whole Social Electricity Consumption in Jiangsu Province Based on Metabolic FGM (1, 1) Model," Mathematics, MDPI, vol. 10(11), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1791-:d:822640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manwell, James F & McGowan, Jon G, 2004. "Development of wind energy systems for New England islands," Renewable Energy, Elsevier, vol. 29(10), pages 1707-1720.
    2. Madeline Hui Li Lee & Yee Chee Ser & Ganeshsree Selvachandran & Pham Huy Thong & Le Cuong & Le Hoang Son & Nguyen Trung Tuan & Vassilis C. Gerogiannis, 2022. "A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    3. Wu, Lifeng & Liu, Sifeng & Fang, Zhigeng & Xu, Haiyan, 2015. "Properties of the GM(1,1) with fractional order accumulation," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 287-293.
    4. Wakiyama, Takako & Kuriyama, Akihisa, 2018. "Assessment of renewable energy expansion potential and its implications on reforming Japan's electricity system," Energy Policy, Elsevier, vol. 115(C), pages 302-316.
    5. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    6. Aydin Jadidi & Raimundo Menezes & Nilmar de Souza & Antonio Cezar de Castro Lima, 2019. "Short-Term Electric Power Demand Forecasting Using NSGA II-ANFIS Model," Energies, MDPI, vol. 12(10), pages 1-14, May.
    7. Altinay, Galip & Karagol, Erdal, 2005. "Electricity consumption and economic growth: Evidence from Turkey," Energy Economics, Elsevier, vol. 27(6), pages 849-856, November.
    8. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    9. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    10. Yu, Hui-Kuang, 2005. "A refined fuzzy time-series model for forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 657-681.
    11. Nasr, G. E. & Badr, E. A. & Dibeh, G., 2000. "Econometric modeling of electricity consumption in post-war Lebanon," Energy Economics, Elsevier, vol. 22(6), pages 627-640, December.
    12. Haijun Chen & Yanzeng Tong & Lifeng Wu, 2021. "Forecast of Energy Consumption Based on FGM(1, 1) Model," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, February.
    13. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    14. Lingling Pei & Jun Liu & Lifeng Wu, 2021. "A Predictive Analysis of the Business Environment of Economies along the Belt and Road Using the Fractional-Order Grey Model," Journal of Mathematics, Hindawi, vol. 2021, pages 1-13, August.
    15. Jianlong Guo & Yan Chen & Lifeng Wu & Musavarah Sarwar, 2021. "Using the Quarterly Compound Fractional Grey Model to Predict the Air Quality in 22 Cities of China," Journal of Mathematics, Hindawi, vol. 2021, pages 1-14, September.
    16. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    2. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Rendón, Juan F. & Trespalacios, Alfredo & Cortés, Lina M. & Villada-Medina, Hernán D., 2021. "Modelización de la demanda de energía eléctrica: más allá de la normalidad || Electrical energy demand modeling: beyond normality," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 83-98, December.
    4. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    5. Abosedra, Salah & Dah, Abdallah & Ghosh, Sajal, 2009. "Electricity consumption and economic growth, the case of Lebanon," Applied Energy, Elsevier, vol. 86(4), pages 429-432, April.
    6. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
    7. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    8. Xiwen Cui & Shaojun E & Dongxiao Niu & Dongyu Wang & Mingyu Li, 2021. "An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    9. Abbasi, Kashif Raza & Shahbaz, Muhammad & Jiao, Zhilun & Tufail, Muhammad, 2021. "How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach," Energy, Elsevier, vol. 221(C).
    10. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    11. Halicioglu, Ferda, 2007. "Residential electricity demand dynamics in Turkey," Energy Economics, Elsevier, vol. 29(2), pages 199-210, March.
    12. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    13. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M., 2014. "Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 290-298.
    14. Ziramba, Emmanuel, 2008. "The demand for residential electricity in South Africa," Energy Policy, Elsevier, vol. 36(9), pages 3460-3466, September.
    15. Obsa Urgessa Ayana & Jima Degaga, 2022. "Effects of rural electrification on household welfare: a meta-regression analysis," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 69(2), pages 209-261, June.
    16. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    17. Tan Lee Pei & Mohd Shahidan Shaari & Tunku Salha Tunku Ahmad, 2016. "The Effects of Electricity Consumption on Agriculture, Service and Manufacturing Sectors in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 401-407.
    18. Ertan Oktay & Giray Gozgor, 2013. "Trade And Regional Development In A Developing Country: The Case Of Turkey," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 25(3), pages 201-212, November.
    19. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    20. Tiwari, Aviral, 2010. "On the dynamics of energy consumption and employment in public and private sector," MPRA Paper 24076, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1791-:d:822640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.