IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2024i1p3-d1552013.html
   My bibliography  Save this article

A Validation Framework for Bulk Distribution Logistics Simulation Models

Author

Listed:
  • Andres Guiguet

    (Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand)

  • Dirk Pons

    (Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand)

Abstract

Background : Simulation of business processes allows decision-makers to explore the implications and trade-offs of alternative approaches, policies and configurations. Trust in the simulation as a stand-in proxy of the real system depends on the validation of the computer model as well as on that of the data used to run it and judge its behaviour. Though validation frameworks exist, they provide little guidance for validation in the context of data-poor endeavours, such as those where observations as sourced from historical records were acquired for purposes other than the simulation itself. As simulation of complex business systems as logistic distribution networks can only rely on this type of data, there is a need to address this void and provide guidance for practitioners and fostering the conversation among academics. This paper presents a high-level development and validation framework applicable to simulation in data-poor environments for modelling the process of bulk distribution of commodities. Method : Traditionally accepted approaches were synthesised so as to develop an into a flexible three-stage modelling and validation approach to guide the process and improve the transparency of adapting available data sources for the simulation itself. The framework suggests the development of parallel paths for the development of computer and data models which, in the last stage, are merged into a phenomenological model resulting from the combination of both. The framework was applied to a case study involving the distribution of bulk commodities over a country-wide network to show its feasibility. Results : The method was flexible, inclusive of other frameworks, and suggested considerations to be made during the acquisition and preparation of data to be used for the modelling and exploration of uncharted scenarios. Conclusions : This work provides an integrative, transparent, and straightforward method for validating exploratory-type simulation models for endeavours in which observations cannot be acquired through direct experimentation on the target system.

Suggested Citation

  • Andres Guiguet & Dirk Pons, 2024. "A Validation Framework for Bulk Distribution Logistics Simulation Models," Logistics, MDPI, vol. 9(1), pages 1-22, December.
  • Handle: RePEc:gam:jlogis:v:9:y:2024:i:1:p:3-:d:1552013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saul I. Gass, 1983. "Feature Article—Decision-Aiding Models: Validation, Assessment, and Related Issues for Policy Analysis," Operations Research, INFORMS, vol. 31(4), pages 603-631, August.
    2. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    3. Robert Marks, 2007. "Validating Simulation Models: A General Framework and Four Applied Examples," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 265-290, October.
    4. Stephan Onggo & Michael Pidd & Didier Soopramanien & Dave Worthington, 2010. "Simulation of Career Development in the European Commission," Interfaces, INFORMS, vol. 40(3), pages 184-195, June.
    5. S Robinson, 2008. "Conceptual modelling for simulation Part II: a framework for conceptual modelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 291-304, March.
    6. S Robinson, 2008. "Conceptual modelling for simulation Part I: definition and requirements," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 278-290, March.
    7. Schwanitz, Valeria Jana, 2021. "Evaluating integrated assessment models of global climate change - From philosophical aspects to practical examples," SocArXiv 63yd8, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elias Hartvigsson & Erik Oscar Ahlgren & Sverker Molander, 2020. "Tackling complexity and problem formulation in rural electrification through conceptual modelling in system dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(1), pages 141-153, January.
    2. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Gerrit Muller, 2021. "Applying Roadmapping and Conceptual Modeling to the Energy Transition: A Local Case Study," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    4. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    5. Jason Madan & Meghan Bruce Kumar & Miriam Taegtmeyer & Edwine Barasa & Swaran Preet Singh, 2020. "SEEP-CI: A Structured Economic Evaluation Process for Complex Health System Interventions," IJERPH, MDPI, vol. 17(18), pages 1-12, September.
    6. Eric Innocenti & Claudio Detotto & Corinne Idda & Dawn Cassandra Parker & Dominique Prunetti, 2023. "Spécification conceptuelle MR POTATOHEAD -Property Market Edition du système complexe d'un territoire touristique à deux marchés : application au territoire corse," Post-Print hal-04121402, HAL.
    7. Brailsford, Sally C. & Eldabi, Tillal & Kunc, Martin & Mustafee, Navonil & Osorio, Andres F., 2019. "Hybrid simulation modelling in operational research: A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 278(3), pages 721-737.
    8. Chong, Adrian & Augenbroe, Godfried & Yan, Da, 2021. "Occupancy data at different spatial resolutions: Building energy performance and model calibration," Applied Energy, Elsevier, vol. 286(C).
    9. Hana M Dobrovolny & Micaela B Reddy & Mohamed A Kamal & Craig R Rayner & Catherine A A Beauchemin, 2013. "Assessing Mathematical Models of Influenza Infections Using Features of the Immune Response," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-20, February.
    10. Zichong Lyu & Dirk Pons & Yilei Zhang & Zuzhen Ji, 2022. "Minimum Viable Model (MVM) Methodology for Integration of Agile Methods into Operational Simulation of Logistics," Logistics, MDPI, vol. 6(2), pages 1-28, June.
    11. Alireza Moumivand & Adel Azar & Abbas Toloie Eshlaghy, 2022. "Combined soft system methodology and agent‐based simulation for multi‐methodological modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(2), pages 200-217, March.
    12. Robert, Marion & Thomas, Alban & Sekhar, Muddu & Badiger, Shrinivas & Ruiz, Laurent & Raynal, Hélène & Bergez, Jacques-Eric, 2017. "Adaptive and dynamic decision-making processes: A conceptual model of production systems on Indian farms," Agricultural Systems, Elsevier, vol. 157(C), pages 279-291.
    13. Penny R. Breeze & Hazel Squires & Kate Ennis & Petra Meier & Kate Hayes & Nik Lomax & Alan Shiell & Frank Kee & Frank de Vocht & Martin O’Flaherty & Nigel Gilbert & Robin Purshouse & Stewart Robinson , 2023. "Guidance on the use of complex systems models for economic evaluations of public health interventions," Health Economics, John Wiley & Sons, Ltd., vol. 32(7), pages 1603-1625, July.
    14. Priscilla Avegliano & Jaime Simão Sichman, 2023. "Equation-Based Versus Agent-Based Models: Why Not Embrace Both for an Efficient Parameter Calibration?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-3.
    15. Lehner, Roland, 2023. "Cross-Supply Chain Collaboration Platform for Pallet Management," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138753, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Martin Comis & Catherine Cleophas & Christina Büsing, 2021. "Patients, primary care, and policy: Agent-based simulation modeling for health care decision support," Health Care Management Science, Springer, vol. 24(4), pages 799-826, December.
    17. Raghu KC & Mika Aalto & Olli-Jussi Korpinen & Tapio Ranta & Svetlana Proskurina, 2020. "Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    18. Pigola, Angélica & Da Costa, Priscila Rezende & Ferasso, Marcos & Cavalcanti da Silva, Luís Fabio, 2024. "Enhancing cybersecurity capability investments: Evidence from an experiment," Technology in Society, Elsevier, vol. 76(C).
    19. Khushboo E-Fatima & Rasoul Khandan & Amin Hosseinian-Far & Dilshad Sarwar & Hareer Fatima Ahmed, 2022. "Adoption and Influence of Robotic Process Automation in Beef Supply Chains," Logistics, MDPI, vol. 6(3), pages 1-20, July.
    20. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2024:i:1:p:3-:d:1552013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.