IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v3y2019i3p17-d244977.html
   My bibliography  Save this article

Probability Density Functions for Travel Times in One-Dimensional and Taxicab Service Zones Parameterized by the Maximal Travel Duration of the S/R Machine Within the Zone

Author

Listed:
  • Todor Todorov

    (Faculty of Mechanical Engineering, Technical University of Sofia, 8 Kliment Ohridski Boulevard, 1000 Sofia, Bulgaria)

Abstract

Travel times for simple trips and cycles are analyzed for a storage/retrieval machine working in a one-dimensional or two-dimensional zone with taxicab geometry. A semi-random trip is defined as one-way travel from a known to a random location or vice versa. A random trip is defined as one-way travel from a random to another random location. The probability density function (PDF) of the travelling time for a semi-random trip in a one-dimensional zone is expressed analytically for all possible locations of its starting point. The PDF of a random trip within the same zone is found as a marginal probability by considering all possible durations for such travel. Then the PDFs for the travel times of single command (SC) and dual command (DC) cycles are obtained by scaling the PDF for the travel time of a semi-random trip (for SC) and as the maximum travel time of two independent semi-random trips (for DC). PDFs for travel times in a two-dimensional service zone with taxicab geometry are calculated by considering the trip as a superposition of two one-dimensional trips. The PDFs for travel times of SC and DC cycles are calculated in the same way. Both the one-dimensional and the two-dimensional service zones are analyzed in the time domain without normalization. The PDFs for all travel times are expressed in an analytical form parameterized by the maximal possible travel time within the zone. The graphs of all PDFs are illustrated by numerical examples.

Suggested Citation

  • Todor Todorov, 2019. "Probability Density Functions for Travel Times in One-Dimensional and Taxicab Service Zones Parameterized by the Maximal Travel Duration of the S/R Machine Within the Zone," Logistics, MDPI, vol. 3(3), pages 1-15, July.
  • Handle: RePEc:gam:jlogis:v:3:y:2019:i:3:p:17-:d:244977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/3/3/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/3/3/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noha Mostafa & Walaa Hamdy & Hisham Alawady, 2019. "Impacts of Internet of Things on Supply Chains: A Framework for Warehousing," Social Sciences, MDPI, vol. 8(3), pages 1-10, March.
    2. Vickson, R. G. & Lu, Xinjian, 1998. "Optimal product and server locations in one-dimensional storage racks," European Journal of Operational Research, Elsevier, vol. 105(1), pages 18-28, February.
    3. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    2. Gianluca Nastasi & Valentina Colla & Silvia Cateni & Simone Campigli, 2018. "Implementation and comparison of algorithms for multi-objective optimization based on genetic algorithms applied to the management of an automated warehouse," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1545-1557, October.
    3. repec:pcz:journl:v:5:y:2011:i:1:p:119-126 is not listed on IDEAS
    4. George Polak, 2005. "On A Special Case of the Quadratic Assignment Problem with an Application to Storage-and-Retrieval Devices," Annals of Operations Research, Springer, vol. 138(1), pages 223-233, September.
    5. Gláucya Daú & Annibal Scavarda & Luiz Felipe Scavarda & Vivianne Julianelli Taveira Portugal, 2019. "The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    6. Claeys, Dieter & Adan, Ivo & Boxma, Onno, 2016. "Stochastic bounds for order flow times in parts-to-picker warehouses with remotely located order-picking workstations," European Journal of Operational Research, Elsevier, vol. 254(3), pages 895-906.
    7. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    8. Nils Boysen & David Füßler & Konrad Stephan, 2020. "See the light: Optimization of put‐to‐light order picking systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 3-20, February.
    9. Riccardo Manzini & Riccardo Accorsi & Giulia Baruffaldi & Teresa Cennerazzo & Mauro Gamberi, 2016. "Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS)," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4286-4304, July.
    10. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    11. Dukic, Goran & Opetuk, Tihomir & Lerher, Tone, 2015. "A throughput model for a dual-tray Vertical Lift Module with a human order-picker," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 874-881.
    12. Altan Yalcin & Achim Koberstein & Kai-Oliver Schocke, 2019. "Motion and layout planning in a grid-based early baggage storage system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 683-725, September.
    13. Catherine Maware & David M. Parsley, 2023. "Can Industry 4.0 Assist Lean Manufacturing in Attaining Sustainability over Time? Evidence from the US Organizations," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    14. Yue Chen & Yisong Li, 2024. "Storage Location Assignment for Improving Human–Robot Collaborative Order-Picking Efficiency in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 16(5), pages 1-25, February.
    15. Nils Boysen & Konrad Stephan & Felix Weidinger, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 169-193, June.
    16. Pazour, Jennifer A. & Meller, Russell D., 2013. "The impact of batch retrievals on throughput performance of a carousel system serviced by a storage and retrieval machine," International Journal of Production Economics, Elsevier, vol. 142(2), pages 332-342.
    17. David Füßler & Nils Boysen, 2019. "High-performance order processing in picking workstations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 65-90, March.
    18. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    19. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    20. Zhuxi Chen & Xiaoping Li & Jatinder N.D. Gupta, 2016. "Sequencing the storages and retrievals for flow-rack automated storage and retrieval systems with duration-of-stay storage policy," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 984-998, February.
    21. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:3:y:2019:i:3:p:17-:d:244977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.