IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i5p147-d356798.html
   My bibliography  Save this article

Analysis of Land-Use Change in Shortandy District in Terms of Sustainable Development

Author

Listed:
  • Onggarbek Alipbeki

    (Department of Land Use and Geodesy, S.Seifullin Kazakh Agro Technical University, Jhenis Avenue, 62, Nur-Sultan 010011, Kazakhstan)

  • Chaimgul Alipbekova

    (Department of Plant Protection and Quarantine, S.Seifullin Kazakh Agro Technical University, Jhenis Avenue, 62, Nur-Sultan 010011, Kazakhstan)

  • Arnold Sterenharz

    (EXOLAUNCH GmbH, (Spin-off Company from the Technical University of Berlin, Germany), Reuchlin str. 10, 10553 Berlin, Germany)

  • Zhanat Toleubekova

    (Department of Land Use and Geodesy, S.Seifullin Kazakh Agro Technical University, Jhenis Avenue, 62, Nur-Sultan 010011, Kazakhstan)

  • Saule Makenova

    (Department of Land Use and Geodesy, S.Seifullin Kazakh Agro Technical University, Jhenis Avenue, 62, Nur-Sultan 010011, Kazakhstan)

  • Meirzhan Aliyev

    (Department of Land Use and Geodesy, S.Seifullin Kazakh Agro Technical University, Jhenis Avenue, 62, Nur-Sultan 010011, Kazakhstan)

  • Nursultan Mineyev

    (Department of Land Use and Geodesy, S.Seifullin Kazakh Agro Technical University, Jhenis Avenue, 62, Nur-Sultan 010011, Kazakhstan)

Abstract

The suburban territories of large cities are transitional zones where intensive transformations in land use are constantly taking place. Therefore, the presented work is devoted to an integrated assessment of land use changes in the Shortandy district (Kazakhstan) based on an integrated study of the dynamics of land use and sustainable development indicators (SDIs). It was found that the main tendency in the land use of this Peri-urban area (PUA) during 1992–2018 is their intensification, through an increase in arable lands. Kazakhstan only recently started the systematic collection of SDIs according to international standards. Therefore, to assess the sustainable development of the study area, limited amounts of information were available. Nevertheless, the use of SDIs from 2007 to 2017 showed that the growth of economic development inthe study area is almost adequately accompanied by an increase in the level of social and environmental development. The methodological approach used can be widely used to assess the sustainable development of specific territories in general and the development of the capital of Kazakhstan and their PUA, in particular.

Suggested Citation

  • Onggarbek Alipbeki & Chaimgul Alipbekova & Arnold Sterenharz & Zhanat Toleubekova & Saule Makenova & Meirzhan Aliyev & Nursultan Mineyev, 2020. "Analysis of Land-Use Change in Shortandy District in Terms of Sustainable Development," Land, MDPI, vol. 9(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:147-:d:356798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/5/147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/5/147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rennings, Klaus & Wiggering, Hubert, 1997. "Steps towards indicators of sustainable development: Linking economic and ecological concepts," Ecological Economics, Elsevier, vol. 20(1), pages 25-36, January.
    2. Kraemer, Roland & Prishchepov, Alexander V & Müller, Daniel & Kuemmerle, Tobias & Radeloff, Volker C & Dara, Andrey & Terekhov, Alexey & Frühauf, Manfred, 2015. "Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(5), pages 1-17.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    4. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    5. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    6. Kanat Samarkhanov & Jilili Abuduwaili & Alim Samat & Gulnura Issanova, 2019. "The Spatial and Temporal Land Cover Patterns of the Qazaly Irrigation Zone in 2003–2018: The Case of Syrdarya River’s Lower Reaches, Kazakhstan," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    7. Reinhard Steurer & Markus Hametner, 2013. "Objectives and Indicators in Sustainable Development Strategies: Similarities and Variances across Europe," Sustainable Development, John Wiley & Sons, Ltd., vol. 21(4), pages 224-241, July.
    8. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syafri Syafri & Batara Surya & Ridwan Ridwan & Syamsul Bahri & Emil Salim Rasyidi & Sudarman Sudarman, 2020. "Water Quality Pollution Control and Watershed Management Based on Community Participation in Maros City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    2. Tatiana Minnikova & Sergey Kolesnikov & Tatiana Minkina & Saglara Mandzhieva, 2021. "Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures," Land, MDPI, vol. 10(2), pages 1-20, February.
    3. Yong Zhu & Shihu Zhong & Ying Wang & Muhua Liu, 2021. "Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    4. Lu Han & Yanbo Qu & Shufeng Liang & Luyan Shi & Min Zhang & Haiyan Jia, 2024. "Spatiotemporal Differentiation of Land Ecological Security and Optimization Based on GeoSOS-FLUS Model: A Case Study of the Yellow River Delta in China Toward Sustainability," Land, MDPI, vol. 13(11), pages 1-21, November.
    5. Ana Nieto Masot & José Luis Gurría Gascón, 2021. "Sustainable Rural Development: Strategies, Good Practices and Opportunities," Land, MDPI, vol. 10(4), pages 1-5, April.
    6. Grigorios L. Kyriakopoulos, 2023. "Land Use Planning and Green Environment Services: The Contribution of Trail Paths to Sustainable Development," Land, MDPI, vol. 12(5), pages 1-25, May.
    7. Onggarbek Alipbeki & Gauhar Mussaif & Chaimgul Alipbekova & Aizada Kapassova & Pavel Grossul & Meirzhan Aliyev & Nursultan Mineyev, 2023. "Untangling the Integral Impact of Land Use Change, Economic, Ecological and Social Factors on the Development of Burabay District (Kazakhstan) during the Period 1999–2021," Sustainability, MDPI, vol. 15(9), pages 1-36, May.
    8. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Gibas & Agnieszka Majorek, 2020. "Analysis of Land-Use Change between 2012–2018 in Europe in Terms of Sustainable Development," Land, MDPI, vol. 9(2), pages 1-20, February.
    2. Rigby, Dan & Woodhouse, Phil & Young, Trevor & Burton, Michael, 2001. "Constructing a farm level indicator of sustainable agricultural practice," Ecological Economics, Elsevier, vol. 39(3), pages 463-478, December.
    3. Diana Tuomasjukka & Staffan Berg & Marcus Lindner, 2013. "Managing Sustainability of Fennoscandian Forests and Their Use by Law and/or Agreement: For Whom and Which Purpose?," Sustainability, MDPI, vol. 6(1), pages 1-32, December.
    4. Meppem, Tony & Gill, Roderic, 1998. "Planning for sustainability as a learning concept," Ecological Economics, Elsevier, vol. 26(2), pages 121-137, August.
    5. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    6. Ediger, Volkan S. & Hosgor, Enes & Surmeli, A. Nesen & Tatlidil, Huseyin, 2007. "Fossil fuel sustainability index: An application of resource management," Energy Policy, Elsevier, vol. 35(5), pages 2969-2977, May.
    7. Onggarbek Alipbeki & Chaimgul Alipbekova & Arnold Sterenharz & Zhanat Toleubekova & Meirzhan Aliyev & Nursultan Mineyev & Kaiyrbek Amangaliyev, 2020. "A Spatiotemporal Assessment of Land Use and Land Cover Changes in Peri-Urban Areas: A Case Study of Arshaly District, Kazakhstan," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    8. van Calker, K. J. & Berentsen, P. B. M. & de Boer, I. M. J. & Giesen, G. W. J. & Huirne, R. B. M., 2004. "An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"," Agricultural Systems, Elsevier, vol. 82(2), pages 139-160, November.
    9. Phillis, Yannis A. & Andriantiatsaholiniaina, Luc A., 2001. "Sustainability: an ill-defined concept and its assessment using fuzzy logic," Ecological Economics, Elsevier, vol. 37(3), pages 435-456, June.
    10. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    11. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    12. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    13. Jim Butcher, 2006. "The United Nations International Year of Ecotourism: a critical analysis of development implications," Progress in Development Studies, , vol. 6(2), pages 146-156, April.
    14. Denise Ravet, 2011. "Lean production: the link between supply chain and sustainable development in an international environment," Post-Print hal-00691666, HAL.
    15. Mara Del Baldo, 2012. "Corporate social responsibility and corporate governance in Italian SMEs: the experience of some “spirited businesses”," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 16(1), pages 1-36, February.
    16. Megan Devonald & Nicola Jones & Sally Youssef, 2022. "‘We Have No Hope for Anything’: Exploring Interconnected Economic, Social and Environmental Risks to Adolescents in Lebanon," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    17. Michael Howes & Liana Wortley & Ruth Potts & Aysin Dedekorkut-Howes & Silvia Serrao-Neumann & Julie Davidson & Timothy Smith & Patrick Nunn, 2017. "Environmental Sustainability: A Case of Policy Implementation Failure?," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    18. Shiferaw, Bekele & Holden, Stein, 1999. "Soil Erosion and Smallholders' Conservation Decisions in the Highlands of Ethiopia," World Development, Elsevier, vol. 27(4), pages 739-752, April.
    19. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    20. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:147-:d:356798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.